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Surprising right triangles

The formula giving the sides of all right triangles with sides of integer lengths

is well known. However, that formula would appear to be quite irrelevant to

both problems of this section.

Problem 1. Find all right triangles with sides of integer lengths for which

the hypotenuse is one unit longer than one of the legs.

Denote the lengths of the legs by a and b; the length of the hypotenuse is

then b + 1, say. Pythagoras’ theorem gives a2 + b2 = (b + 1)2, whence a2 =
2b + 1, which implies that a must be odd. Writing a = 2k + 1, we obtain

4k2 + 4k + 1 = 2b + 1, whence b = 2k(k + 1). Hence there are infinitely

many such triangles, and the triples of the lengths of their sides are given

by (a, b, c) =
(
2k + 1, 2k(k + 1), 2k2 + 2k + 1

)
, where k ranges over the

natural numbers. Here are the first few such triples.

a 3 5 7 9 11 13 15

b 4 12 24 40 60 84 112

c 5 13 25 41 61 85 113

Thus this problem turned out to be quite easy. However, in mathematics it

often happens that making what seems like a small change in the formulation

of the problem results in a considerable increase in difficulty.

Problem 2. Find all right triangles with sides of integer lengths and with

one leg one unit shorter than the other.

One such triangle quickly comes to mind, namely the “Egyptian” one

with sides of lengths 3, 4 and 5. But can you find even one more such triangle?

Denoting the length of the shorter leg by a and the length of the hypotenuse
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4 Part I. Surprising and Easy

by c, we obtain the equation

a2 + (a + 1)2 = c2, or 2a2 + 2a + 1 = c2.

From this we see that c must be odd, so we write c = 2k + 1, and obtain

the equation a(a + 1) = 2k(k + 1). But what do we do now? We might

have recourse to a computer in order to find a few more solutions, such

as: (20, 21, 29) and (119, 120, 169), but this sheds no light on the general

problem.

Let’s rewrite our equation as follows:

4a2 + 4a + 2 = 2c2, or (2a + 1)2 + 1 = 2c2.

Setting 2a + 1 = x and c = y, we find we have arrived at Pell’s equation,

so-called:

x2 − 2y2 = −1. (1)

One obvious solution of this equation is the pair (x, y) = (1, 1).

With each pair (x, y) of integers solving equation (1), we associate the

number x + y
√

2. Suppose now that (x1, y1) and (x2, y2) are two solutions

of that equation. Consider the number

x + y
√

2 = (x1 + y1

√
2)(x2 + y2

√
2)

= x1x2 + 2y1y2 + (x1y2 + x2y1)
√

2.

We then have

x2 − 2y2 = (x1x2 + 2y1y2)2 − 2(x1y2 + x2y1)2

= x2
1x

2
2 + 4x1x2y1y2 + 4y2

1y2
2 − 2x2

1y2
2 − 4x1y2x2y1 − 2x2

2y2
1

= x2
1

(
x2

2 − 2y2
2

)
− 2y2

1

(
x2

2 − 2y2
2

)
=

(
x2

1 − 2y2
1

)(
x2

2 − 2y2
2

)
.

Since by assumption x2
1 − 2y2

1 = x2
2 − 2y2

2 = −1, it follows that the pair

(x, y) satisfies the equation

x2 − 2y2 = 1 (2)

On the other hand, if (x1, y1) is a solution of equation (1), but (x2, y2) is a

solution of equation (2), then the pair (x, y) will be a solution of equation

(1). Since we know one such solution, namely (1, 1), it follows that if we

define the natural numbers xn and yn via xn + yn

√
2 = (1 +

√
2 )n, then for
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odd n the pair (xn, yn) will be a solution of equation (1). Computing (easiest

done on a computer), we obtain the following table:

n 1 3 5 7 9 11 13

xn 1 7 41 239 1393 8119 47321

yn 1 5 29 169 985 5741 33461

from which we quickly obtain the following table of lengths of sides of right

triangles satisfying the condition of Problem 2:

a 3 20 119 696 4059 23660

b 4 21 120 697 4060 23661

c 5 29 169 985 5741 33461

As is clear from the numbers appearing in this tale, the increase in difficulty

over Problem 1 is striking.

The answer to the obvious question as to whether the above procedure

yields all solutions, is given by the following result.

Theorem 1.1. The formula x + y
√

2 = ± (1 +
√

2)k , where k ∈ Z and x

and y are integers, yields all pairs (x, y) of integers satisfying equations

(1) and (2). More precisely, if the integer k is even, then the pair (x, y) is a

solution of equation (2), while if k is odd (x, y) is a solution of equation (1)

(and these account for all solutions of those equations).

For the proof we shall need two lemmas.

Lemma 1.2. Let a and b be integers such that the number a + b
√

2 lies in

the interval (1, 1 +
√

2 ). Then the pair (a, b) cannot be a solution of either

of the equations Pell (1) or (2).

Proof. We argue “by contradiction”. Thus we assume that 1 < a + b
√

2 <

1 +
√

2 and a2 − 2b2 = ±1. Then since a − b
√

2 = ±1

a+b
√

2
and a + b

√
2 >

1 by assumption, we infer that −1 < a − b
√

2 < 1. Adding the two pairs

of inequalities then yields 0 < 2a < 2 + 2
√

2. Since a is an odd integer,

it follows that a = 1. Hence 1 < 1 + b
√

2 < 1 +
√

2, which is impossible

since b is an integer. �

The second lemma is immediate from the algebraic manipulations pre-

ceding the statement of Theorem 1.1.

Lemma 1.3. If the pairs (x1, y1) and (x2, y2) are solutions of equation (1)

or equation (2) (but not necessarily of the same one of these two equations)
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and a + b
√

2 = (x1 + y1

√
2 )(x2 + y2

√
2 ), then the pair (a, b) is likewise a

solution of one of the equations (1) or (2). �

Proof of Theorem 1.1. Write ω = 1 +
√

2 and suppose (x, y) is a solution

of either equation (1) or (2). We wish to show that x + y
√

2 = ωn for some

integer n. The proof breaks up into cases.

Case 1. Assume first that x + y
√

2 > 1 and x + y
√

2 �= ωn for any integer

n. In this case there must exist a natural number k such that ωk < x + y
√

2 <

ωk+1. Writing a + b
√

2 = (x + y
√

2 )ω−k , we then have 1 < a + b
√

2 < ω,

so by Lemma 1.2 the pair (a, b) is not a solution of either of the equations

(1) or (2). However, since ω−1 = −1 +
√

2 and the pair (−1, 1) is a solution

of equation (1), it follows from Lemma 1.3 that the pair (a, b) is a solution

of one of the equations (1) or (2). This contradiction completes the proof.

Case 2. Now suppose 0 < x + y
√

2 < 1 and assume for instance that (x, y)

is a solution of equation (1). Since x2 − 2y2 = (x − y
√

2 )(x + y
√

2 ) = −1

we must have −x + y
√

2 > 1. Note that (−x, y) is also a solution of equation

(1). Hence by the previous case, we have −x + y
√

2 = ωn for some natural

number n, whence x + y
√

2 = (−x + y
√

2 )−1 = ω−n. The case that (x, y)

is a solution of equation (2) is similar.

Case 3. If x + y
√

2 < 0 then −x − y
√

2 > 0 and one or other of the pre-

ceding cases applies. �

Corollary 1.1. The formula x + y
√

2 = (3 + 2
√

2 )n = (1 +
√

2 )2n,

where n is a non-negative integer, gives all solutions of equation (2) in

natural numbers.

To see this, it is enough to observe that if n is a negative integer and

x + y
√

2 = (3 + 2
√

2 )n, then x + y
√

2 = (3 − 2
√

2 )−n, so y < 0. �

The following statement, providing the solution of Problem 2, is proved

similarly.

Corollary 1.2. The formula x + y
√

2 = (1 +
√

2 )2n−1, n ∈ N, furnishes

all natural solutions of equation (1). �



2
Surprisingly short

solutions of geometric
problems

Presenting lines, circles and other plane curves in terms of equations provides

us with an opportunity for calculating. And moreover sometimes, as you shall

shortly see, the translation “from geometry to algebra” yields shorter proofs;

the solution of Problem 2 of the present section affords an illustration of this.

To facilitate understanding of that solution, we first analyze the standard

solution of a different problem.

Problem 1. Consider the circles with centers at the points O1(−1, 1) and

O2(3, 2) and respective radii r1 = 3 and r2 = 2. Find the equation of the

straight line through the points of intersection of these circles.

The circles in question have equations (x + 1)2 + (y − 1)2 = 9

and (x − 3)2 + (y − 2)2 = 4 (see Figure 1). Hence their points (x, y) of

–2 2 4 6
–1

1

3

5

Figure 1
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8 Part I. Surprising and Easy

intersection are the solutions of the system

{
x2 + y2 + 2x − 2y − 7 = 0,

x2 + y2 − 6x − 4y + 9 = 0.

Of course, this system can be solved. Subtracting the second equation from

the first yields the equivalent system

{
4x + y = 8,

x2 + y2 − 6x − 4y + 9 = 0.

Substituting y = 8 − 4x in the second equation then gives the equation

17x2 − 54x + 41 = 0,

yielding x = 27±4
√

2
17

. Hence y = 28∓16
√

2
17

. Thus the points of intersection of

the given circles have coordinates (x, y) = ( 27±4
√

2
17

, 28∓16
√

2
17

).

We now find the equation of the straight line through these two points.

We have

x − 27+4
√

2
17

8
√

2
17

=
y − 28−16

√
2

17

− 32
√

2
17

or 4
(
x − 27+4

√
2

17

)
= −y + 28−16

√
2

17
,

or 4x − 108+16
√

2
17

= −y + 28−16
√

2
17

,

or 4x + y − 136
17

= 0, or 4x + y − 8 = 0.

And what did we obtain? The same equation as appeared immediately at

the beginning of the calculation! So perhaps rather than just calculating we

should have done some thinking?!

Set f1(x, y) = x2 + y2 + 2x − 2y − 7 and f2(x, y) = x2 + y2 − 6x −
4y + 9. Since it follows from f1(x, y) = 0 and f2(x, y) = 0 that f1(x, y) =
f2(x, y), we infer that the points of intersection of the circles must satisfy

the equation f1(x, y) = f2(x, y), which is an equation of degree one, and

therefore an equation of a straight line. Hence this equation must be a equation

of the straight line through the points of intersection of the given circles.

Figure 2 shows three pairwise intersecting circles and the three straight

lines through the points of intersection of pairs of the circles. This figure was

drawn by means of a computer, which calculated the points of intersection

of the circles and drew lines through the appropriate pairs of points. We see

that in the diagram these three straight lines all pass through a single point,

that is, are concurrent. Although it is certainly true that this general fact can
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Figure 2

be established by purely geometric means, you will now see how very short

(and natural) its algebraic proof is.

Problem 2. Suppose we are given three pairwise intersecting circles in the

plane. For each pair of circles, consider the line through the two points of

intersection of those circles. Prove that if no two of these three lines are

parallel, then they are concurrent.

Each of the given circles has an equation of the form fi(x, y) = 0, i =
1, 2, 3, where

fi(x, y) = (x − xi)
2 + (y − yi)

2 − r2
i , i = 1, 2, 3.

As was shown in the solution to Problem 1 above, the lines ℓ12, ℓ13 and

ℓ23, through the points of intersection of pairs of circles, have equations

f1(x, y) = f2(x, y), f1(x, y) = f3(x, y) and f3(x, y) = f2(x, y).

Let M(x0, y0) denote the point of intersection of the lines ℓ12 and

ℓ13. Since the equations f1(x0, y0) = f2(x0, y0) and f1(x0, y0) = f3(x0, y0)

together imply f2(x0, y0) = f3(x0, y0), it follows that the point M also lies

on the line ℓ23, so that the three lines do indeed all pass through a single

point.

An elegant argument, is it not? Later on, in Theme 8, we shall use

modifications and generalizations of it. We conclude the section with another

problem.

Problem 3. Prove that the four points of intersection of the two parabolas

y = 2x2 + 2x − 3 and x = 3 − 2y − y2 lie on a circle.

Rewrite the equations of the given parabolas in the form

2x2 + 2x − 3 − y = 0 and y2 + x + 2y − 3 = 0.
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Figure 3

Adding twice the second of these equations to the first yields the equa-

tion 2x2 + 2y2 + 4x + 3y − 9 = 0, which is the equation of a circle and is

satisfied by all points of intersection of the given two curves (Figure 3).



3
A natural assertion with a

surprising proof

It is well-known that for any triangle, the sum of the lengths of any two

sides is greater than the length of the remaining side. Moreover, for any three

positive numbers with the property that the sum of any two is greater than the

third, there is a triangle with sides of lengths equal to the given numbers. It’s

strange that not even the three-dimensional analogues of these statements

are to be found in the relevant mathematical literature.

We begin with the solution of the following problem.

Problem 1. Prove that the sum of the areas of any three faces of a tetrahe-

dron is greater than the area of the fourth.

Consider any tetrahedron ABCD and denote by P the (orthogonal)

projection of the vertex D onto the plane of the face ABC. The triangles

ABP , BCP and ACP are then the projections of the faces ABD, BCD and

ACD respectively. Denote by θ the angle between the base plane and the side

face ABD. Since by definition this angle is the angle between two half-lines,

it must lie in the interval (0, π ). We first prove that SABP = SABD · | cos θ |
(where S denotes area). Since HP = HD · | cos θ | (see Figure 4),

SABP =
1

2
AB · HP =

1

2
AB · HD · | cos θ | = SABD · | cos θ |.

Thus SABP < SABD . We conclude that the area of the projection of any of

the three side faces is less that the actual area of that face.

Now suppose first that the point P is inside (or on the boundary of) the

triangle ABC (as in Figure 5a). In this case we have

SABC = SABP + SBCP + SACP < SABD + SBCD + SACD,

as we wished to prove. We now examine the other possibilities.

11



12 Part I. Surprising and Easy

Figure 4

The projection of the tetrahedron onto the plane of its face ABC may

be a triangle or a quadrilateral. If it is a triangle there are two possibilities:

either P , the projection of the vertex D, is inside the triangle ABC, which

is the case we have already dealt with, or one of the vertices A, B, or C

lies inside the triangle formed by P and the other two of A, B, C. We may

assume the situation is as in Figure 5b, in which case we have SABC ≤
SABP < SABD < SABD + SBCD + SACD . The final case is that where the

points A, B, C and P are the vertices of a convex quadrilateral, with the

vertex diagonally opposite P being A, say, as in Figure 5c. In this case we

have SABC ≤ SABP + SACP < SABD + SACD < SABD + SBCD + SACD .

A B

C

P

A B

P

C

A B

C
P

(a) (b) (c)

Figure 5

It is natural to ask if the converse statement is true. This Theme is devoted

to the proof that this is indeed the case.

Theorem 3.1. Given any four positive numbers with the property that the

sum of any three is greater than the fourth, there is a tetrahedron with faces

of areas equal to the given numbers.

The proof is based on the following result.

Problem 2. For a given tetrahedron, let ni , i = 1, 2, 3, 4, denote the vector

perpendicular to the ith face, of length equal to the area of that face and

directed outwards from the tetrahedron. Then n1 + n2 + n3 + n4 = 0.
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A solution of this problem “in one line” will be given later on in the

exposition of Theme 14. The argument we give here is significantly longer,

but “more elementary”.

We shall show that the projection of the sum n1 + n2 + n3 + n4 on any

line perpendicular to the plane of a face is zero, whence the desired conclu-

sion. To this end, we introduce a coordinate system with the property that

the face ABC lies in the Oxy-plane, with the z-axis oriented so that the

vector n4 perpendicular to that face points in the negative z-direction. Con-

sider the vector n1 perpendicular to the face ABD. The angle θAB between

it and the Oz-axis is equal to the angle between the faces ABC and ABD

meeting in the edge AB of the tetrahedron. Hence the projection of that

vector on the Oz-axis (that is, the z-component of that vector) is equal to

|n1| cos θAB = SABD cos θAB = ±SABP (in the notation of Problem 1), the

sign depending on whether θAB is acute or obtuse.

Assume first that the angle between every two faces is acute. In this case

the projection of each vertex on the plane of the opposite face lies inside

that face (as in Figure 6). Since the angles at the edges AB, BC, and AC

are acute in this case, it follows that the projection of the sum n1 + n2 + n3

on the Oz-axis is equal to SABP + SBCP + SACP = SABC . Then since the

z-coordinate of the vector n4 is −SABC , we conclude that the projection of

the sum of all four vectors is zero.

A B

C

P

Figure 6

Next suppose that the angle at the edge BC of the tetrahedron is obtuse

and those at the edges AB and AC are acute. In this case the points A, B,

P and C are the vertices of a quadrilateral (as in Figure 7). In view of the

A B

C
P

Figure 7
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obtuseness of the angle at BC, the z-coordinate of the vector ni perpendicular

to the face BCD is −SBCP , so the z-coordinate of the sum of the four

vectors is

SABP − SBCP + SACP − SABC .

Since in this situation we have SABP + SACP = SBCP + SABC , we once again

have that the projection of the sum of the four vectors on a line perpendicular

to the face ABC is zero.

By now it will, one hopes, have become clear how to complete the

argument. Suppose the vertex C lies in the triangle ABP (as in Figure 8),

which will occur if the angles at the edges AC and BC are both obtuse. In

this case we shall have that the z-coordinate of the sum of the vectors ni is

equal to SABP − SACP − SBCP − SABC = 0.

A B

P

C

Figure 8

And now we are ready to prove the main result.

Proof of Theorem 3.1. Let a1, a2, a3 and a4 be positive numbers such that

the sum of any three is greater than the fourth. This condition suffices for

the existence of a convex quadrilateral with sides of lengths a1, a2, a3 and

a4. By “bending” this quadrilateral along a diagonal, we obtain a non-planar

closed curve made up of four straight segments of the given lengths. Imagine

“arrows” drawn along these edges in order; the sum of the four vectors in

3-space thus defined will then be zero (see Figure 9). Lay out from the

origin of coordinate 3-space rays parallel to these four vectors and for each

n
1

n
2 n3

n
4

Figure 9
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such ray choose a plane intersecting it in a point away from the origin and

perpendicular to it. In this way we obtain a tetrahedron with faces on the

chosen planes.

Denote by m1, m2, m3 and m4 outwardly directed vectors perpendicular

to the faces of this tetrahedron and of lengths equal to the respective areas of

the faces. By construction, we have ni ‖ mi , i = 1, 2, 3, 4, and by Problem

2 we also have m1 + m2 + m3 + m4 = 0.

We shall need the following auxiliary result.

Lemma 3.2. Let n1, n2, n3 and n4 be non-coplanar vectors satisfying

n1 + n2 + n3 + n4 = 0, and let m1, m2, m3 and m4 be such that m1 +
m2 + m3 + m4 = 0 and mi ‖ ni , i = 1, 2, 3, 4. Then there exists a number

α such that mi = αni , i = 1, 2, 3, 4.

Proof. Observe first that it follows from the assumptions of the lemma that

no three of the vectors ni , i = 1, 2, 3, 4 are coplanar. For, if for instance n1,

n2 and n3 were all parallel to some plane, then the condition that the sum

of all four ni is zero would imply that the vector n4 was also parallel to that

plane. Since ni ‖ mi , we have mi = αini . Then

α4(n1 + n2 + n3) = −α4n4 − m4 = m1 + m2 + m3

= α1n1 + α2n2 + α3n3,

whence (α1 − α4)n1 + (α2 − α4)n2 + (α3 − α4)n3 = 0. However, since the

vectors n1, n2 and n3 are not coplanar, we must then have α1 = α2 = α3 =
α4, and the lemma is proved. �

To complete the proof of the Theorem 3.1 it now suffices to observe that

the areas Si of the faces of our tetrahedron satisfy Si = |mi | = α|ni | = αai .

Hence there is a tetrahedron similar to this one with the given numbers a1,

a2, a3 and a4 as the areas of its faces. �

We shall continue the discussion of such tetrahedra subsequently in

the context of Theme 15. To conclude the present section, we note that,

from a methodological point of view, the lemma used in the proof can be

reformulated in purely geometrical terminology and in this form suggested

to the students as a problem for them to solve independently.

Problem 3. Suppose that the edges and diagonal issuing from some vertex

of a parallelepiped are pairwise parallel to the edges and diagonal issuing

from a vertex of another parallelepiped. Prove that then the lengths of the

edges of these parallelepipeds are proportional.





4
Surprising answers

There are certain problems whose solutions are surprising because they

contradict our intuition. A typical example of this is afforded by our first

problem, which, although very simple, yields an answer so strange that one

feels compelled to go back and check the calculation.

Problem 1. The ends of a rope of length 20.1 feet are attached to hooks a

distance 20 feet apart fixed at the same height in a wall. What distance will

the midpoint of the the rope be displaced vertically by a weight hung at that

midpoint?

Figure 10

The answer is, of course, the length of the shorter leg of a right triangle

with hypotenuse 10.05 ft and the other leg 10 ft (Figure 10). Hence

h =
√

10.052 − 102 =
√

0.05 · 20.05 =
√

1.0025 ≈ 1.00125.

Thus the weighted rope will hang down by more than a foot!

The next problem is no more difficult, and has a no less surprising answer.

Problem 2. A rope is tied around the Earth’s equator and then lengthened

by 6 feet. How high can the rope be raised off the equator to the same height

all the way round? In particular, could a mouse creep under it?

Let R be the radius of the Earth and h the height of the rope above the

surface. On the one hand, the length of the rope is 2π (R + h), and on the

other, 2πR + 6. Hence 2π (R + h) = 2πR + 6, whence h = 3
π

≈ 0.96 ft.

Thus not only could a mouse creep under the rope, but also a cat, and even

some breeds of dog.

17



18 Part I. Surprising and Easy

It is surprising also that the answer is independent of the radius. Thus if,

for example, a rope were stretched around Jupiter’s equator, lengthened by 6

feet, and then raised uniformly above the surface, the gap between the rope

and Jupiter’s equator would be the same as for the Earth.

We now turn to the main problem of this section.

Problem 3. Now suppose that the rope of length 6 feet greater than the

distance around the Earth’s equator is pulled away from the Earth’s surface

at just one point. How high above the surface can that point of the rope be

pulled?

Figure 11 shows the shape of the rope. It is in contact with the surface of

the Earth nearly everywhere, and those two portions of it where it isn’t, form

straight-line segments tangential to the surface. We write x for the size of

Figure 11

the angle formed by the radius from the Earth’s center to one of the points of

tangency and the line segment joining the Earth’s center to the point where

the rope has an “angle”. The length of the rope is made up of the length of

that part in contact with the Earth’s surface and that of the two straight-line

segments, that is,

R(2π − 2x) + 2R tan x.

Since by assumption the length of the rope is 2πR + 6, we obtain the equation

R(2π − 2x) + 2R tan x = 2πR + 6, or tan x − x =
3

R
,

where R ≈ 2.1 · 107 feet. Thus 1
R

is very small.

Clearly the equation tan x − x = a cannot be solved exactly, so we shall

need to make an approximation. But then, since here we have a ≈ 1.42857 ·
10−7 “very small indeed”, to what degree of accuracy do we need to make

our approximate calculation?
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As it turns out we don’t actually need to do any such calculation; it’s all

much simpler. The desired height h can be found from the equation

h + R =
R

cos x
, whence h = R

1 − cos x

cos x
.

We use the following approximations, good for small values of x:

tan x ≈ x +
x3

3
and cos x ≈ 1 −

x2

2
. (1)

The approximations (1) follow from Taylor’s theorem, which we shall intro-

duce in Theme 24. In this section we shall prove them by more ad hoc

means.

Thus, assuming these approximations, we may replace the equation

tan x − x = 3
R

by the equation x3

3
= 3

R
, which has solution x = 3

√
9
R

. The

formula h = R 1−cos x
cos x

may likewise be replaced by h = R x2

2
, yielding, with

the approximate value of x just obtained,

h =
R

2

3

√
81

R2
=

3

2

3
√

3R ≈ 596.859.

Thus we conclude that at its point of greatest height above the Earth’s surface

the rope is almost 600 feet high!

Of course, this argument is not rigorous. After all, given a statement that

one expression is approximately equal to another, it is essential to know how

accurate the approximation is. One might say that our argument was carried

out “on a physical level of rigor”. However, as it turns out the use of more

precise methods of approximation, our rough approximation did in fact yield

a satisfactory accurate answer.

In order to establish the approximations (1), we first remind the reader

of what one might call “the first nontrivial limit”:

lim
x→0

sin x

x
= 1. (2)

The limit expression (2) means that for small x one has the approximate

equality sin x ≈ x. Then since 1 − cos x = 2 sin2 x
2
, we infer that

1 − cos x ≈ 2 ·
x2

4
=

x2

2
,

so that cos x ≈ 1 − x2

2
, the second of the approximations in (1).

The first approximation in (1) has a more roundabout proof. For this

we need “Cauchy’s mean-value theorem”, a basic result of the differential

calculus.
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Theorem 4.1 (Cauchy). Let f (x) and g(x) be defined and continuous on

the interval [a, b] and differentiable on the interval (a, b). Suppose also that

g′(x) �= 0 for all x ∈ (a, b). Then there exists a number c ∈ (a, b) such that

f (b) − f (a)

g(b) − g(a)
=

f ′(c)

g′(c)
.

Proof. Consider the auxiliary function

h(x) = (f (x) − f (a))(g(b) − g(a)) − (g(x) − g(a))(f (b) − f (a)).

It is easy to see that h(a) = h(b) = 0. Hence by Rolle’s theorem there exists

a number c ∈ (a, b) for which h′(c) = 0. Then since

h′(x) = f ′(x)(g(b) − g(a)) − g′(x)(f (b) − f (a)),

it follows that

f ′(c)(g(b) − g(a)) = g′(c)(f (b) − f (a)),

whence the desired conclusion. �

We now prove a series of lemmas leading to the desired approximation.

Lemma 4.2. If
f (x)

g(x)
→ 1 as x → 0, then for small x the approximate

equality
∫ x

0
f (t) dt ≈

∫ x

0
g(t) dt holds.

Write F (x) =
∫ x

0
f (t) dt and G(x) =

∫ x

0
g(t) dt . The lemma asserts that

lim
x→0

F (x)

G(x)
= 1.

Since F ′(x) = f (x) and G′(x) = g(x), it follows from Cauchy’s mean value

theorem that

lim
x→0

F (x)

G(x)
= lim

c→0

f (c)

g(c)
= 1. �

Lemma 4.3. The approximation sin x ≈ x − x3

6
is valid for small x.

Since

x − sin x =
∫ x

0

(1 − cos t) dt

and, as has already been proved,

1 − cos x

x2
→

1

2
as x → 0,
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it follows from Lemma 4.2 that

x − sin x ≈
∫ x

0

t2

2
dt =

x3

6
. �

Lemma 4.4. The approximation tan x ≈ x + x3

3
is valid for small x.

In fact, since

tan x − sin x = sin x

(
1

cos x
− 1

)
=

sin x · 2 sin2 x
2

cos x
≈

x3

2
,

we have that

tan x ≈ sin x +
x3

2
≈ x −

x3

6
+

x3

2
= x +

x3

3
. �





5
A surprising connection

between three sequences

In Theme 1 we introduced pairs (an, bn) of natural numbers defined by the

equation an + bn

√
2 = (1 +

√
2 )n. It is actually easier to calculate these

numbers using the recurrence relation they satisfy.

Lemma 5.1. The sequences (an) and (bn) satisfy the the recurrence rela-

tions an = an−1 + 2bn−1, bn = an−1 + bn−1, a1 = b1 = 1.

Proof. Here one merely observes that

an + bn

√
2 = (1 +

√
2 )n = (1 +

√
2 )(1 +

√
2 )n−1

= (1 +
√

2 )(an−1 + bn−1

√
2)

= an−1 + 2bn−1 + (an−1 + bn−1)
√

2,

and the lemma is proved. �

The first sequence (xn) of interest to us in this Theme has as terms the

ratios of an to bn; thus xn = an

bn
. The recurrence relations given in the above

lemma yield a recurrence relation for the sequence (xn):

xn =
an

bn

=
an−1 + 2bn−1

an−1 + bn−1

=
an−1

bn−1
+ 2

an−1

bn−1
+ 1

=
xn−1 + 2

xn−1 + 1
and x1 = 1.

Hence the first few terms of (xn) are as follows:

1,
3

2
,

7

5
,

17

12
,

41

29
,

99

70
,

239

169
,

577

408
,

1393

985
,

3363

2378
,

8119

5741
.

23
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Note that the fractions an

bn
are reduced as written since

gcd(an, bn) = gcd(an−1 + 2bn−1, an−1 + bn−1) = gcd(bn−1, an−1 + bn−1)

= gcd(bn−1, an−1) = · · · = gcd(a1, b1) = 1.

In order to get an idea of the behavior of the sequence (xn), we compute

the decimal expansion (to seven places) of the first few terms:

1.000000

1.500000

1.400000

1.416667

1.413793

1.414201

1.414216

1.414213

1.414214

There is no point in computing further terms since clearly they will all have

the same digits in the first seven decimal places. It looks very much as if

the sequence (xn) converges to
√

2. With a view to proving this, we estimate

x2
n − 2. Since

x2
n − 2 =

(xn−1 + 2)2 − 2(xn−1 + 1)2

(xn−1 + 1)2
=

2 − x2
n−1

(xn−1 + 1)2

and xn−1 ≥ 1, we infer the inequality

∣∣x2
n − 2

∣∣ ≤ 1
4

∣∣x2
n−1 − 2

∣∣ ,

so that x2
n → 2, whence xn →

√
2.

We define our second sequence, having the same limit
√

2, by means of

Newton’s tangent method applied to the equation x2 − 2 = 0. Thus we start

with any number x0, and, as the first step, find the equation of the tangent

line to the graph of y = x2 − 2 at the point on it with abscissa x0. We obtain

in the usual way y = x2
0 − 2 + 2x0(x − x0) = 2x0x − x2

0 − 2. The abscissa

of the point of intersection of this line with the x-axis is then the solution of

the equation 2x0x = x2
0 + 2, yielding x = x2

0 +2

2x0
. Figure 12 shows the graph

of y = x2 − 2 and its tangent line to the point (2, 2).

Hence the sequence defined by the recurrence relation yn = y2
n−1+2

2yn−1

together with y1 = 1, is a sequence of successive approximations to
√

2,

obtained via Newton’s tangent method. It is well known (and will be proved

in connection with Theme 23) that this sequence does in fact converge (very
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–1 1 2 3

–1

1

2

Figure 12

rapidly) to its limit. Here are the first few terms:

1,
3

2
,

17

12
,

577

408
,

665 857

470 832
.

The first terms of our two sequences coincide: y1 = x1. However, the

coincidences don’t end there: we see that y2 = x2, y3 = x4 and y4 = x8

and calculation of further terms of the first sequence yields y5 = x16. Such

coincidences might suggest the general hypothesis that yn = x2n−1 .

However, there are more peculiarities to come. Let’s look at a third

sequence (zn) with the same first term z1 = 1, this time given by the recur-

rence relation zn = z2
n−1+4zn−1+2

z2
n−1+2zn−1+2

. Its first few terms are

1,
7

5
,

239

169
,

275 807

195 025
,

367 296 043 199

259 717 522 849

from which we see that z2 = x3 and z3 = x7. Further calculation leads one

to suspect that quite generally zn = x2n−1.

In fact the sequence (zn) can also be obtained via an application of New-

ton’s tangent method—this time to the equation x − 1 − 1
x+1

= 0. Writing

f (x) = x − 1 − 1
x+1

, one has f ′(x) = 1 + 1
(x+1)2 = x2+2x+2

(x+1)2 . Hence

zn = zn−1 −
f (zn−1)

f ′(zn−1)

= zn−1 −
z2
n−1 − 2

zn−1 + 1
·

(zn−1 + 1)2

z2
n−1 + 2zn−1 + 2

=
z3
n−1 + 2z2

n−1 + 2zn−1 − z3
n−1 − z2

n−1 + 2zn−1 + 2

z2
n−1 + 2zn−1 + 2

=
z2
n−1 + 4zn−1 + 2

z2
n−1 + 2zn−1 + 2

.

The main result of this section is the following.
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Theorem 5.2. The following equalities are valid for all n:

yn = x2n−1 (1)

zn = x2n−1. (2)

These coincidences are surprising, and so also are their proofs, which

verge on the obvious.

Proof. Define

cn + dn

√
2 = (1 +

√
2 )2n−1 = a2n−1 + b2n−1

√
2.

Then

cn + dn

√
2 = (cn−1 + dn−1

√
2 )2 = c2

n−1 + 2d2
n−1 + 2cn−1dn−1

√
2,

so that cn = c2
n−1 + 2d2

n−1 and dn = 2cn−1dn−1, whence

cn

dn

=
c2
n−1 + 2d2

n−1

2cn−1dn−1

=

(
cn−1

dn−1

)2

+ 2

2
cn−1

dn−1

.

Thus the sequence ( cn

dn
) satisfies the same recurrence relation as the sequence

(yn). And then since y1 = 1 = c1

d1
, it follows that

yn =
cn

dn

=
a2n−1

b2n−1

= x2n−1 .

Next define

un + vn

√
2 = (1 +

√
2 )2n−1 = a2n−1 + b2n−1

√
2.

Since 2n − 1 = 2(2n−1 − 1) + 1, we have

un+ vn

√
2 = (1 +

√
2 )(un−1 + vn−1

√
2 )2

= (1 +
√

2 )
(
u2

n−1 + 2v2
n−1 + 2un−1vn−1

√
2
)

= u2
n−1 + 4un−1vn−1 + 2v2

n−1 +
(
u2

n−1 + 2un−1vn−1 + 2v2
n−1

)√
2,

whence zn = un

vn
= x2n−1. This concludes the proof of the theorem. �

The fact that the sequences of this section are related to those arising in

the solution of Problem 2 of Theme 1 is not accidental. This connection will

be pursued further in the context of Theme 22.


