Invited Speakers - A Closer Look

picture of Jeremy Avigad

Jeremy Avigad
Carnegie Mellon University

ASL Invited Address

The promise of formal mathematics

Friday January 7, 2022, 10:00 a.m.-10:50 a.m.

picture of Omer Ben-Neria

Omer Ben-Neria
Einstein Institute of Mathematics, Jerusalem

ASL Invited Address

Diamonds compactness and ultrafilters in set theory

Friday January 7, 2022, 2:00 p.m.-2:50 p.m.

picture of Robert Q. Berry, III

Robert Q. Berry, III
University of Virginia

NAM Cox-Talbot Address

Interest Convergence: An analytical viewpoint for examining how power dictates policies and reforms in mathematics

Friday January 7, 2022, 7:45 p.m.-8:35 p.m.

This Cox-Talbot talk uses a hybrid policy analysis-critical race theory lens informed largely by legal scholars like Derrick Bell to make the case that policies and reforms in mathematics education failed to address the needs of historically excluded learners. Rather, these policies and reforms are often designed and enacted to protect those in power's economic, technological, and social interests. This talk offers contrasting narratives between policy intentions and policy enactment, highlighting how the language of mathematics policies positions historically excluded learners as deficient within their cultures and communities. Finally, this talk considers features necessary in mathematics policies and reform documents when discussing the historically excluded learners.

Peter Cholak
University of Notre Dame

ASL Invited Address

Ramsey like theorems on the rationals

Saturday January 8, 2022, 10:00 a.m.-10:50 a.m.

Karl-Dieter Crisman
Gordon College

ACMS Guest Speaker


Thursday January 6, 2022, 7:00 p.m. - 7:20 p.m.

Marianna Csörnyei
University of Chicago

AWM-AMS Noether Lecture

The Kakeya Needle Problem for rectifiable sets

Thursday January 6, 2022, 10:05 a.m.-10:55 a.m.

picture of Qiang Du

Qiang Du
Columbia University

SIAM Invited Address

Analysis and applications of nonlocal models

Thursday January 6, 2022, 11:10 a.m.-12:00 p.m.

Nonlocality has become increasingly noticeable in nature. The modeling and simulation of its presence and impact motivate new development of mathematical theory. In this lecture, we focus on nonlocal models with a finite horizon of interactions, and illustrate their roles in the understanding of various phenomena involving anomalies, singularities and other effects due to nonlocal interactions. We also present some recent analytical studies concerning nonlocal operators and nonlocal function spaces. The theoretical advances are making nonlocal modeling and simulations more reliable, effective and robust for applications ranging from classical mechanics to traffic flows of autonomous and connected vehicles.

picture of Elamin Elbasha

Elamin Elbasha
Merck & Co., Inc.

Current Events Bulletin Session - Lecture IV
Supported by a generous donation from Salilesh Mukhopadhay, in honor of Satyendra Nath Bose, Mahadev Datta, and Pranab K. Sarkar, to bring appreciation for mathematics to a broader audience

Mathematics and the quest for vaccination-induced herd immunity threshold

Friday January 7, 2022, 5:00 p.m.-6:00 p.m.

picture of Nicolas Fillion

Nicolas Fillion
Simon Fraser University

POM SIGMAA Guest Speaker

Trust but Verify: What Can We Know About the Reliability of a Computer-Generated Result?

Friday January 7, 2022, 5:30 p.m.-6:30 p.m.

Since the Second World War, science has become increasingly reliant on the use of computers to perform mathematical work. Today, computers have justifiably become a trusted ally of scientists and mathematicians. At the same time, there is a panoply of cases in which computers generate demonstrably incorrect results; and there is currently no reason to expect that this situation will change. This prompts the careful user to verify computer-generated results, but it is clear that we are often not in a position to review the work of computers as we would traditionally review a putative derivation or calculation. In this sense, computational processes are epistemically opaque.

Since Humphreys introduced the phrase `epistemic opacity' in the philosophical literature in 2004, the concept of opacity has been developed along different lines; furthermore, many incompatible claims have been advanced---be they about what opacity is or about whether we should worry about it---leaving this field of the philosophy of computing in a state of confusion. In this paper, we propose a framework that disentangles three core questions (1. What kinds of epistemic opacity are there in scientific computing? 2. Should we worry about epistemic opacity? 3. Should we seek greater transparency whenever possible?) and systematically survey how their answers inter-relate.

picture of Elena Giorgi

Elena Giorgi
Columbia University

Current Events Bulletin Session - Lecture II

The stability of black holes with matter

Friday January 7, 2022, 3:00 p.m.-4:00 p.m.

Black holes are fundamental objects in our understanding of the universe. The mathematics behind them has surprising geometric properties, and their dynamics is governed by hyperbolic PDEs. A basic question one may ask is whether these solutions to the Einstein equation are stable under small perturbations, which is a typical requirement to be physically meaningful. We will see how the dispersion of gravitational waves plays a key role in the stability problem, illustrating the main conjectures and some recent theorems regarding the evolution of black holes and their interaction with matter fields.

Anna Gilbert
Yale University

von Neumann Lecture

Title TBA

Saturday January 8, 2022, 9:00 a.m.-9:50 a.m.

picture of Edray Herber Goins

Edray Herber Goins
Pomona College

MAA Project NExT Lecture on Teaching and Learning

Addressing Anti-Black Racism in Our Departments

Thursday January 6, 2022, 11:10 a.m.-12:00 p.m.

In April 2021, the PBS Newshour ran a story with the headline “Even as colleges pledge to improve, share of engineering graduates who are Black declines”. Indeed, there is a dearth of Black students in our mathematics classrooms. A 2018 study by the Pew Research Center found that Black students earned just 7 percent of STEM bachelor’s degrees. Unfortunately, this is an issue for our faculty as well. A 2017 report in Inside Higher Ed states that there has been an increase over time in the diversity of senior and junior faculty members in the STEM fields — except black faculty. A New York Times article, titled “For a Black Mathematician, What It’s Like to Be the ‘Only One’”, quoted that there are just a dozen black mathematicians among nearly 2,000 tenured faculty members in the nation’s top 50 math departments.

What can we as faculty members do to make our mathematics departments more welcoming and diverse for Black students and faculty alike? These are daunting problems, and many with an interest in presenting solutions do not even have tenure! In this interactive presentation, we present some practices that even tenure-track faculty can engage in to showcase how #BlackLivesMatter — from increasing the number of pathways for majors, to building community by conducting research with students, and having hard conversations within hiring committees.

picture of Monica Jackson

Monica Jackson
American University

NAM Claytor-Woodard Lecture

Spatial Data Analysis for Public Health Data

Thursday January 6, 2022, 2:40 p.m.-3:30 p.m.

Spatial data analysis concerns data that are correlated by location, and relies upon the assumption that objects closer together in space (e.g. geographical location) will most likely have similar responses. This talk provides an overview of graphical and quantitative methods I developed for the analysis of spatial data. Emphasis is on lattice data (also known as areal data or aggregated data) however modeling of geostatistical data and point patterns will be discussed. I will apply these methods to public health data with applications to cancer trends, maternal mortality in the Dominican republic, and COVID-19 disease surveillance.

picture of Franziska Jahnke

Franziska Jahnke
University of Münster

ASL Invited Address

Decidability and definability in unramified henselian valued fields

Friday January 8, 2022, 1:00 p.m.-1:50 p.m.

Unramified and finitely ramified henselian valued fields are central to studying model-theoretic phenomena in mixed characteristic. Decidability and definability in unramified henselian valued fields with perfect residue field are well understood, starting with the seminal work of Ax, Kochen, and Ershov. In this talk, we present recent developments in unramified henselian valued fields with imperfect residue field, and also comment on what changes in the case of finite ramification. Joint work with Sylvy Anscombe and Philip Dittmann.

Tyler J. Jarvis
Brigham Young University

AMS Lecture on Education
Supported by a generous donation from JMM partner COMAP, Inc. in memory of Bob Moses

Restoring confidence in the value of mathematics

Saturday January 8, 2022, 11:10 a.m.-12:00 p.m.

Ten years ago a group of my department’s math majors told my colleague, Jeff Humpherys, and me, “We majored in math because we like it, but we know it won’t get us a job unless we want to teach.” That comment motivated us to create an entirely new program in applied and computational mathematics (ACME) at BYU—a program to teach students mathematics that is deep and beautiful and that employers are also eager to pay for, mathematics that students can use on the job to solve the problems of the 21st century.

Since we started the ACME program eight years ago, the number of majors in our department has almost doubled, ACME students account for two-thirds of all our majors, and resources have flowed to our department. Our graduates’ starting salaries are substantially higher, and many of them are turning those big offers down to go to top graduate programs, where they are flourishing. Our alumni are fiercely loyal to ACME and eager to help the students that follow them.

In this presentation I’ll talk about some of the problems we had to overcome to get ACME started, how we made ACME successful, and what we have learned along the way to help those of you wanting to do something similar for your students.

Autumn Kent
University of Wisconsin - Madison

Spectra Lavender Lecture

Title TBA

Thursday January 6, 2022, 11:05 a.m.-11:55 a.m.

Daniel Reuben Krashen
Rutgers University

AMS Invited Address

Title TBA

Wednesday January 5, 2022, 10:05 a.m.-10:50 a.m.

Dave Kung
Charles A. Dana Center, The University of Texas at Austin

MAA-SIAM-AMS Hrabowski-Gates-Tapia-McBay Lecture

Why the Math Community Struggles with Equity & Diversity - and Why There’s Reason for Hope

Friday January 8, 2022, 9:00 a.m.-9:50 a.m.

Xihong Lin
Harvard University, Broad Institute of MIT and Harvard

ASA Committee of Presidents of Statistical Societies Lecture

Learning from COVID-19 Data on Transmission, Health Outcomes, Interventions and Vaccination

Thursday January 6, 2022, 3:50 p.m.-4:40 p.m.

picture of Dan Margalit

Dan Margalit
Georgia Institute of Technology

AMS Maryam Mirzakhani Lecture

Title TBA

Thursday January 6, 2022, 9:00 a.m.-9:50 a.m.

picture of Sandra Müller

Sandra Müller
Technical University of Vienna

ASL Invited Address

Lower Bounds in Set Theory

Saturday January 8, 2022, 1:00 p.m.-1:50 p.m.

Computing the large cardinal strength of a given statement is one of the key research directions in set theory. Fruitful tools to tackle such questions are given by inner model theory. The study of inner models was initiated by G\”odel's analysis of the constructible universe $L$. Later, it was extended to canonical inner models with large cardinals, e.g. measurable cardinals, strong cardinals or Woodin cardinals, which were introduced and studied by Jensen, Mitchell, Steel, Woodin, Sargsyan, and others.

We will outline two recent applications where inner model theory is used to obtain lower bounds in large cardinal strength for statements that do not involve inner models. The first result, joint with Y. Hayut, involves combinatorics of infinite trees and the perfect subtree property for weakly compact cardinals $\kappa$. The second result studies the strength of a model of determinacy in which all sets of reals are universally Baire. Sargsyan conjectured that the existence of such a model is as strong as the existence of a cardinal that is both a limit of Woodin cardinals and a limit of strong cardinals. Larson, Sargsyan and Wilson showed that this would be optimal via a generalization of Woodin's derived model construction. We will discuss a new translation procedure for hybrid mice extending work of Steel, Zhu and Sargsyan and use this to prove Sargsyan's conjecture.

picture of Gaston Mandata N'Guerekata

Gaston Mandata N'Guerekata
Morgan State University

AMS Invited Address

An invitation to periodicity

Wednesday January 5, 2022, 2:15 p.m.-3:05 p.m.

Periodicity is everywhere, every day. Considering some periodic phenomena, we will revisit the mathematical concept of periodicity and its recent generalizations up to almost automorphy. We will study their applications to some differential equations. An elementary proof of the celebrated Massera Theorem will be presented. We will also show that an almost periodic second order semilinear elliptic equation may not have almost periodic solutions, but many almost automorphic solutions in the envelop of the equation. An application to almost periodically forced pendulum will be given.

picture of Hee Oh

Hee Oh
Yale University

AMS Erdős Lecture for Students

Title TBA

Wednesday January 5, 2022, 11:10 a.m.-12:00 p.m.

Jill Pipher
Brown University

AMS Retiring Presidential Address

Title TBA

Wednesday January 6, 2022, 3:20 p.m.-4:10 p.m.

Heather Price
North Seattle College

SIGMAA EM Guest Speaker

Climate Justice Integrated Learning in STEM

Thursday January 6, 2022, 7:30 p.m.-8:20 p.m.

Our students learn about climate change from the news and in many of our classes, and they are hungry for what to do with that knowledge and how to connect it within their careers and communities. Climate touches and belongs in every subject we teach, from Humanities, business, and health sciences, to all areas of STEM, including mathematics and statistics. Dr. Price will share her work leading the Climate Justice Project at North Seattle College. This initiative seeks to build bridges between disciplines to help faculty incorporate climate justice and civic engagement into their core curriculum, in ways that empower students and encourage student retention and success. In today’s talk Dr. Price will share ideas of how and why to integrate climate justice and civic engagement into STEM, with examples from mathematics courses.

Kavita Ramanan
Brown University

AAAS-AMS Invited Address

Title TBA

Friday January 7, 2022, 11:10 a.m.-12:00 p.m.

picture of Anup Rao

Anup Rao
University of Washington

Current Events Bulletin Session - Lecture III

Sunflowers: from soil to oil

Friday January 7, 2022, 4:00 p.m.-5:00 p.m.

A sunflower is a collection of sets whose pairwise intersections are all the same. Erdos and Rado showed that any large family of sets of size k must contain a large sunflower, and made a conjecture about the dependence of the size of sunflower on the size of the family of sets. Very recently, Alweiss, Lovett, Wu and Zhang made significant progress towards proving their conjecture. I discuss the key ideas involved in this line of work, and show how this problem is connected to a diverse array of applications in mathematics and computer science.

picture of Adrian Rice

Adrian Rice
Randolph-Macon College


Beyond the strength of a woman's physical power: Mathematics, Machines, and the Mind of Ada Lovelace

Wednesday January 5, 2022, 5:00 p.m.-5:50 p.m.

Ada Lovelace is widely regarded as an early pioneer of computer science, due to an 1843 paper about Charles Babbage's Analytical Engine, which, had it been built, would have been a general-purpose computer. Her paper contains an account of the principles of the machine, along with a table often described as 'the first computer program'. However, over the years there has been considerable disagreement among scholars as to her mathematical proficiency, with opinions ranging from 'genius' to 'charlatan'. This talk presents an analysis of Lovelace's extant mathematical writings and will attempt to convey a more nuanced assessment of her mathematical abilities than has hitherto been the case.

picture of Tom Scanlon

Tom Scanlon
University of California, Berkeley

Current Events Bulletin Session - Lecture I

Tame Geometry for Hodge theory

Friday January 7, 2022, 2:00 p.m.-3:00 p.m.

Hodge theory brings the methods of complex analysis and differential geometry to algebraic geometry. As such, highly transcendental constructions, such as those of period mappings produced through integration, are used to study problems of an algebraic nature. Some fundamental conjectures in the subject, most notably the Hodge Conjecture itself, predict that certain objects defined using these transcendental methods are in fact algebraic. In 1994, Cattani, Deligne, and Kaplan proved one of the strongest theorems in this vein on the algebraicity of the so-called Hodge locus.

In a paper published in 2020, Bakker, Klingler, and Tsimerman gave a simplified proof of the Cattani-Deligne-Kaplan theorem by showing that the period mappings appearing in that theorem are definable in an o-minimal structure. Here, “definable” carries its precise meaning in the sense of first-order logic and o-minimality is a technical, tameness condition on structures (again in the sense of first-order logic) on the real numbers. The Bakker-Klingler-Tsimerman theorem and a string of subsequent results tying o-minimal to Hodge theory exhibit once more that o-minimality may serve as tame geometry.

In this lecture, I will discuss o-minimality in concrete terms, recall some of the basics of Hodge theory, state the Bakker-Klingler-Tsimerman theorem in a simplified form, and explain the relevance of o-minimality to this theorem and its generalizations.

picture of Lynn Scow

Lynn Scow
California State San Bernardino

ASL Invited Address

Semi-retractions and the Ramsey Property

Friday January 7, 2022, 9:00 a.m.-9:50 a.m.

Karen Smith
University of Michigan

AMS Colloquium Lecture I

Title TBA

Wednesday January 5, 2022, 1:00 p.m.-1:50 p.m.

AMS Colloquium Lecture II

Title TBA

Thursday January 6, 2022, 1:00 p.m.-1:50 p.m.

AMS Colloquium Lecture III

Title TBA

Friday January 7, 2022, 1:00 p.m.-1:50 p.m.

picture of Eitan Tadmor

Eitan Tadmor
University of Maryland

AMS Josiah Willard Gibbs Lecture

Emergent Behavior in Collective Dynamics

Thursday January 6, 2022, 5:00 p.m.-6:00 p.m.

A fascinating aspect of collective dynamics is self-organization, where small scale interactions lead to the emergence of high-order structures with larger-scale patterns. It is a characteristic feature in collective dynamics of “social particles” which actively probe the environment and aggregate into various forms of clusters. In different contexts these take the form of flocks, swarms, consensus, synchronized states etc. In this talk I will survey recent mathematical developments in collective dynamics, starting with the influential works of Reynolds, Krause, Vicsek and Cucker & Smale.

The dynamics is governed by different protocols of pairwise interactions, quantified in terms of proper communication kernels. Collisions are avoided. A main question of interest is how different classes of such kernels affect the large-time large-crowd dynamics. We will ask how short-range interactions can affect the emergence of large-scale patterns, what is the role of repulsion away thermal equilibrium, and how graph connectivity dictates the emergent behavior of multi-species dynamics.

Pauline van den Driessche
University of Victoria, B.C., Canada

ILAS Invited Address

Sign Patterns Meet Dynamical Systems

Wednesday January 5, 2022, 9:00 a.m.-9:50 a.m.

Biological systems, including those for predator-prey and disease transmission models, often give rise to systems of first order ordinary differential equations (ODEs). Linearization then yields a system $\dot x= Ax$ where $A$ is the community matrix. By contrast, mechanical and electrical systems often give rise to a second order ODE system $\"{x}= A\dot{x}+ Bx$, which is equivalent to a first order system with coefficient matrix $C =\begin{bmatrix}A&B\\I&0\end{bmatrix}$. In cases for which the signs rather than the magnitudes of matrix entries are known, the matrices become sign patterns with entries $\in\{+,-,0\}$. What can be determined about the behavior of a dynamical system governed by such a sign pattern matrix? This general question is addressed by developing results on sign patterns. Some answers in special cases are given that determine stability and inertia properties, which are important for the underlying dynamical systems.

Joint work with Adam H. Berliner, Minerva Catral, D.D. Olesky.

picture of Erik Walsberg

Erik Walsberg
University of California Irvine

ASL Invited Address

Model theory of large fields

Saturday January 8, 2022, 9:00 a.m.-9:50 a.m.

Lauren K. Williams
Harvard University

MAA-AMS-SIAM Gerald and Judith Porter Public Lecture

Title TBA

Saturday January 8, 2022, 3:00 p.m.-4:00 p.m.

picture of Talithia Williams

Talithia Williams
Harvey Mudd College

JPBM Communications Award Lecture

Title TBA

Saturday January 8, 2022, 1:30 p.m.-2:30 p.m.