1014-52-1230 Ralph Howard* (howard@math.sc.edu), Department of Mathematics, University of South Carolina, Columbia, SC 29208, and Daniel Hug (daniel.hug@math.uni-freiburg.de), Mathematisches Institut, Universität Freiburg, Freiburg, Germany. Convex Bodies with Constant Projection Functions.
Let $G_{k}\left(\mathbf{R}^{n}\right)$ be the Grassmannian of all k-dimensional subspaces of \mathbf{R}^{n}. If K is a convex body in \mathbf{R}^{n}, then the k projection function of K is the function that maps $U \in G_{k}\left(\mathbf{R}^{n}\right)$ to the k dimensional volume of the orthogonal projection, $K \mid U$, of K onto U. When this function is constant K is said to have constant k-brightness. Constant 1-brightness is the familiar case of constant width.
Theorem. If $n \geq 5$ and the convex body K in \mathbf{R}^{n} has constant width and constant 3 -brightness, then K is a Euclidean ball.

The main point is that no regularity assumptions are being made about K. (Received September 27, 2005)

