1014-11-217 Mary E. Flahive* (flahive@math.oregonstate.edu) and Richard T. Bumby
(bumby@math.rutgers.edu). Inhomogeneous Diophantine approximation for irrationals with quasi-periodic continued fractions. Preliminary report.
For θ and ϕ with $q \theta-\phi \notin Z$ for integral q, the inhomogeneous approximation constant is

$$
M(\theta, \phi)=\inf _{|q| \mapsto \infty}\{|q||q \theta-\phi|\}
$$

Minkowski proved $M(\theta, \phi) \leq 1 / 4$, and J. H. Grace [Proc London Math Soc 17 (1918), 316-319] constructed θ with $M(\theta, 1 / 2)=1 / 4$. We consider the case when $\phi \in Q(\theta)$ and the sequence of partial quotients of θ eventually is $\phi_{1}(0), \ldots, \phi_{J}(0), \ldots, \phi_{1}(i), \ldots, \phi_{J}(i), \ldots$, where $\left\{\phi_{j}(i)\right\}$ are arithmetic progressions. We extend work of Takao Komatsu which used many different types of continued fractions to calculate $M\left(e^{2 / s}, \phi\right)$ for $\phi \in Q(\theta)$. Here we use regular simple continued fractions and a modification of Grace's method to generalize and obtain new results for the case when $\theta=e^{2 / s}$. Among these are a characterization of pairs θ, ϕ (restricted as above) for which $M(\theta, \phi)=0$ and a characterization of all $\phi=\frac{r \theta+m}{n}$ with $M(\theta, \phi)<1 / n^{2}$. The work uses a compactness theorem to relate $M(\theta, \phi)$ to the smallest value of the product of two linear expressions with rational coefficients. (Received August 25, 2005)

