## 1014-11-1180 Michael I Rosen\* (mrosen@math.brown.edu), Box 1917, Brown University, Providence, RI 02912, and Joseph H Silverman. Independence of Heegner Points.

A discussion of the following theorem will be presented. Let E be an elliptic curve defined over  $\mathbb{Q}$  with conductor N. It is known that there is a non-trivial morphism  $\Phi: X_0(N) \to E$  which is defined over  $\mathbb{Q}$ . Let  $\{K_i | i = 1, 2, ..., t\}$  be distinct imaginary quadratic number fields and  $y_i$  a Heegner point on  $X_0(N)$  attached to the maximal order in  $K_i$  (we assume that every prime dividing N is either split or ramified in  $K_i$ ). Let  $P_i = \Phi(y_i)$ . There is a constant  $C = C(E, \Phi)$  such that whenever the odd part of the class group of each  $K_i$  exceeds C, the points  $\{P_1, P_2, ..., P_t\}$  are linearly independent in  $E(\overline{\mathbb{Q}})/E(\overline{\mathbb{Q}})_{tors}$ . (Received September 28, 2005)