Consider two ordered lists A and B. Let $A =< a_1, a_2, a_3, \ldots, a_j >$ such that all elements of A are distinct, and let $B =< b_1, b_2, b_3, \ldots, b_k >$ where b_i is a random element of A, allowing for repetition. The question “How often will there be two values, say x and y, that are ‘close’ in A also be ‘close’ in B” has been discussed. Now we consider the case in which A or B is an n-dimensional list, that is to say each element of our order list is itself an ordered list. (Received September 21, 2010)