The following statement has been proven.

Theorem. Consider a polynomial planar system on the Poincaré sphere that has an orbit \(\{ u_1(t), u_2(t) \} \), which tends to one of the following four equilibria \((m, l) = (0, 0), (0, \infty), (\infty, 0), (\infty, \infty)\) with a specified slope as \(t \to \infty \) or \(t \to -\infty \).

Then, in the case of a general position, only the following asymptotes of the orbit are possible: i) \(u_1 \equiv 0 \) and / or ii) \(u_2 \equiv 0 \) and / or iii) \(u_2 = ku_1^\rho(1 + o(1)) \), \(k=\text{const} \neq 0 \),

where \(\rho > 0 \) if \((m, l) = (0, 0) \) or \((m, l) = (\infty, \infty) \) and \(\rho < 0 \) if \((m, l) = (0, \infty) \) or \((m, l) = (\infty, 0) \).

The conditions of the general position are formulated, and the values of \(\rho \) and \(k \) are determined with help of the Newton Polygon of the system. (Received September 21, 2010)