A frame is a complete lattice which satisfies a strong distributive law, also called the ‘frame law’. Some examples of frames are the following: For any topological space \((X, \tau)\), the collection of all open subsets, \(\tau\), is a frame under inclusion; For a commutative ring \(A\) with identity, \(\text{Rad}(A)\), the collection of all radical ideals, is a frame under inclusion; For a lattice-ordered group \(G\), \(C(G)\), the collection of all convex lattice-ordered subgroups, is a frame under inclusion.

Given a frame \(L\), the collection of all minimal prime elements of \(L\) can be equipped with two topologies, namely, the Zariski topology (denoted by \(\text{Min}(L)\)) and the inverse topology (denoted by \(\text{Min}(L)^{-1}\)). In this talk the speaker will describe these two topologies and give conditions on \(L\) for the spaces \(\text{Min}(L)\) and \(\text{Min}(L)^{-1}\) to have various topological properties, for example, compact, locally compact, Hausdorff, and zero-dimensional. Finally, if time permits, the speaker will discuss the application of the various frame-theoretic conditions to commutative ring theory. (Received September 19, 2010)