A partial proper m-coloring of a graph G is a proper coloring $\varphi : V_0 \to \{1, \ldots, m\}$, for some $V_0 \subseteq V(G)$. Define the list-assignment $L = L_\varphi$ by $L(v) = \{\varphi(v)\}$ if $v \in V_0$, and $L(v) = \{1, \ldots, m\} \setminus \{\varphi(N_G(v) \cap V_0)\}$ if $v \in V \setminus V_0$, where $N_G(v)$ denotes the neighborhood of v. φ has a completion to a proper m-coloring of G if and only if G has a proper L_φ-coloring.

We say (G, L) satisfies Hall’s condition if, for all subgraphs H of G, $|V(H)| \leq \sum_{\sigma \in C} \alpha(H(\sigma, L))$, where $\alpha(H(\sigma, L))$ is the independence number of the subgraph of H induced on the vertices having σ in their lists. Hall’s condition is necessary for G to have a proper L-coloring. G is said to be Hall m-completable, for some $m \geq \chi(G)$, if ever partial proper m-coloring φ, such that (G, L_φ) satisfies Hall’s condition, has a completion. In this talk, we discuss new results in classifying Hall m-completable graphs for certain values of m. (Received September 21, 2010)