An integer part $I$ for an ordered field $R$ is a discrete ordered subring containing 1 such that for all $r \in R$ there exists a unique $i \in I$ with $i \leq r < i + 1$. Mourgues and Ressayre showed that every real closed field $R$ has an integer part. Let $k$ be the residue field of $R$, and let $G$ be the value group of $R$. Let $k\langle\langle G\rangle\rangle$ be the set of generalized power series of the form $\sum_{g \in S} a_g g$ where $a_g \in k$ and the support of the power series $S \subseteq G$ is well ordered. Mourgues and Ressayre produce an integer part for $R$ by building a special embedding of $R$ into $k\langle\langle G\rangle\rangle$. To understand the complexity of integer parts, we analyzed an algorithmic version of their construction for countable $R$ and showed that the generalized power series in the image of $R$ are of length less than $\omega^\omega$. Ressayre showed that every real closed exponential field has an integer part that is closed under $2^x$ using the same approach. However, he had to more carefully choose the value group $G$ and the embedding of $R$ into $k\langle\langle G\rangle\rangle$. We explore how these alterations affect the lengths of the generalized power series in the image of $R$. (Received September 13, 2010)