In his monograph “Isolated Invariant Sets and the Morse Index”, Conley studied the flows on R^n such that the set of bounded orbits is compact and proposed the following problem: Suppose $V(x)$ is a smooth function on R^n with $\|\nabla V\| \geq \varepsilon$ for $|x| \geq R$. Is it true that the set of bounded solutions of $\frac{dx}{dt} = y$, $\frac{dy}{dt} = \theta y - \nabla V(x)$ is compact whenever $\theta \neq 0$? In this paper, using the notion of an isolating block, a positive answer in the case $n = 1$ to this problem is given.

(Received September 22, 2004)