We consider a variation of the classical Turán-type extremal problem as introduced by Erdős et.al. Let π be an n-element graphical sequence, and $\sigma(\pi)$ be the sum of the terms in π, that is the degree sum. Let G be a graph. The problem is to determine the smallest even integer m such that any n-term graphical sequence π having $\sigma(\pi) \geq m$ has a realization containing G as a subgraph. Denote this value m by $\sigma(G, n)$. Here we determine a lower bound for $\sigma(K^t_s, n)$ - where K^t_s denotes the complete multipartite graph with t partite sets each of size s, and prove equality in the case $s = 2$. We also provide a graph theoretic proof of the value of $\sigma(K^t, n)$. (Received September 14, 2004)