1147-57-698 Reiko Shinjo* (reiko@kokushikan.ac.jp), Kokushikan University, School of Science and Engineering, 4-28-1 Setagaya, Setagaya-ku, Tokyo 154-8515, Japan, and Kokoro Tanaka (kotanaka@u-gakugei.ac.jp), Tokyo Gakugei University, Department of Mathematics, 4-1-1 Nukuikitamachi, Koganei-shi, Tokyo 184-8501, Japan. An extension of Jeong's theorem from knot theoretical viewpoint.
The number f_{i} of the i-gons of a knot diagram on the 2 sphere satisfying the equation $\sum_{i=2}^{\infty}(4-i) f_{i}=8 \cdots(*)$, which follows from the well-known Euler's formula. In this talk, we give a partial answer to the following problem: For any knot K and every sequence of non-negative integers $\left\{f_{2}, f_{3}, f_{5}, f_{6}, \ldots, f_{n}\right\}$ satisfying the equation ($*$), does there exist an integer f_{4} and a knot projection of K that has exactly $f_{k} k$-gons for all $2 \leq k \leq n$? Our result is an extension of Jeong's theorem in graph theory. (Received January 28, 2019)

