1147-13-510 Shinichiro Iai* (iai.shinichiro@s.hokkyodai.ac.jp). Associated graded modules of canonical modules over almost Gorenstein local rings.

This is a joint work with S. Goto. Let (A, \mathfrak{m}) be a Cohen-Macaulay local ring possessing the canonical module K_A of $d = \dim A > 0$. Assume A/\mathfrak{m} is infinite. Set $\mathcal{G}(\mathfrak{m}) = \bigoplus_{i \ge 0} \mathfrak{m}^i/\mathfrak{m}^{i+1}$ and $\mathcal{G}(\mathfrak{m}, K_A) = \bigoplus_{i \ge 0} \mathfrak{m}^i K_A/\mathfrak{m}^{i+1} K_A$. Let Q be a minimal reduction of \mathfrak{m} . Put $c = \mu_A(K_A)$. Then two results in the talk can be stated as follows. **Proposition.** Assume that A is an almost Gorenstein local ring. Then

$$\mu_A(\mathfrak{m}^i \mathbf{K}_A) - \mu_A(\mathfrak{m}^i) = (c-1) \binom{d+i-2}{d-2}$$

for all integers $i \ge 0$. In particular, $\mu_A(\mathfrak{m}K_A) - \mu_A(\mathfrak{m}) = (c-1)(d-1)$.

Theorem. Assume that A is an almost Gorenstein local ring. Then the following two conditions are equivalent.

- (1) $\mathcal{G}(\mathfrak{m}, \mathbf{K}_A)$ is a Cohen-Macaulay $\mathcal{G}(\mathfrak{m})$ -module.
- (2) $\mathcal{G}(\mathfrak{m})$ is a Cohen-Macaulay ring and $QK_A \cap \mathfrak{m}^2 K_A = Q\mathfrak{m} K_A$.
 - (Received January 25, 2019)