1147-13-296 Koji Nishida* (nishida@math.s.chiba-u.ac.jp), Graduate School of Science, Chiba
University, Japan. On the symbolic Rees rings for Fermat ideals.
Let $n \geq 3$ be an integer and $S=K[x, y, z]$ be the polynomial ring over a field K. We assume (i) ch $K=0$, or (ii) ch $K=p>0$ and $p \nmid n$. Let I be the ideal of S generated by $x\left(y^{n}-z^{n}\right), y\left(z^{n}-x^{n}\right)$ and $z\left(x^{n}-y^{n}\right)$. If K has a primitive n-th root of unity θ, then I is the defining ideal of the following $n^{2}+3$ points in $\mathbb{P}_{K}^{2} ;(1: 0: 0),(0: 1: 0),(0: 0: 1)$ and ($1: \theta^{i}: \theta^{j}$), where $i, j=1,2, \ldots, n$. It is known that the symbolic Rees ring of I is finitely generated. The purpose of this talk is to give another proof for this fact using Huneke's criterion on finite generation of symbolic Rees rings. (Received January 17, 2019)

