1147-11-667 David DeMark, Wade Hindes, Rafe Jones* (rfjones@carleton.edu), Moses Misplon and Michael Stoneman. Eventually stable quadratic polynomials over \mathbb{Q}.
Call a polynomial with rational coefficients eventually stable if its nth iterate has a uniformly bounded number of irreducible factors (over \mathbb{Q}) as n grows. I"ll discuss recent work aimed at establishing the eventual stability of polynomials of the form $x^{2}+c$, where c is rational. We focus on the one recalcitrant case where known methods break down, namely when c is the reciprocal of an integer. (Received January 28, 2019)

