1147-05-825 Eugene Gorsky, Mikhail Mazin and Monica Vazirani*, Mathematics Department, One Shields Ave, Davis, CA 95616. Rational Dyck Paths in the Non-Relatively Prime Case.
The Catalan numbers $1,2,5,14 \ldots$ is one of the most well-known sequences in combinatorics. It enumerates over 100 families of combinatorial objects. Some of these families include the set of Dyck paths in an $n \times(n+1)$ rectangle, the set of $(+n,+n+1)$ - invariant subsets of \mathbb{N} containing 0 , simultaneous ($n, n+1$)-cores, the $(n+1)$-restricted affine permutations in \widehat{S}_{n} / S_{n}, the number of cells in a certain affine Springer fibre, a basis of the representation $e L_{(n+1) / n}$ of the spherical Cherednik algebra $e H_{n} e$. The above families and the bijections between them all generalize from $(n, n+1)$ to (n, m) when $\operatorname{gcd}(n, m)=1$. However when $\operatorname{gcd}(d n, d m)=d>1$, many of these break: in particular some of the sets stay finite while others become infinite.

I will discuss an equivalence relation on the infinite set of $(+d n,+d m)$-invariant subsets of \mathbb{N}, such that its equivalence classes are again in bijection with finite set of Dyck paths in a $d n \times d m$ rectangle. Our hope is that this construction will lead to a geometric or representation theoretic interpretation of the dinv statistic from the $d=1$ case.

This is based on joint work with Eugene Gorsky and Mikhail Mazin. (arXiv:1703.02668) (Received January 29, 2019)

