1147-05-476 **Y Zhao*** (yzhao@mail.ucf.edu), Department of Mathematics, University of Central Florida, Orlando, FL 32816. Upper bounds for $\Delta(\Sigma)$ where $-53 \le \chi(\Sigma) \le -8$.

Vizing's Planar Graph Conjecture states that every planar graph of maximum degree at least 6 is class one. If for a surface Σ , we define $\Delta(\Sigma) = \max{\{\Delta(G) : G \text{ is a connected class two graph of maximum degree } \Delta$ that is embedded in Σ }, then one can claim that for a surface Σ , any connected graph of maximum degree Δ that is embedded in Σ is class one if $\Delta > \Delta(\Sigma)$. Further, Vizing's Planar Graph Conjecture also can be restated as $\Delta(S) = 5$ if S is a sphere. In this talk, we will focus on $\Delta(\Sigma)$ and upper bounds for $\Delta(\Sigma)$ for surfaces Σ of characteristic $-53 \leq \chi(\Sigma) \leq -8$. (Received January 24, 2019)