1154-VS-2715 Julia Cai^{*} (julia.cai@yale.edu), Benjamin Hutz, Leopold Mayer and Max Weinreich. Automorphisms of Rational Functions over Fields of Characteristic p > 0.

Given an algebraically closed field K, the group $\operatorname{PGL}_2(K)$ acts on the set of all rational maps $\phi : \mathbb{P}^1(K) \to \mathbb{P}^1(K)$ by conjugation. Given a map ϕ , we can compute its automorphism group $\operatorname{Aut}(\phi)$, which is the stabilizer of ϕ in $\operatorname{PGL}_2(K)$ under this group action. It is known that $\operatorname{Aut}(\phi)$ is a finite group. Restricting our attention to fields of positive characteristic, we use the classification of finite subgroups of $\operatorname{PGL}_2(K)$ to show that every finite subgroup is isomorphic to $\operatorname{Aut}(\phi)$ for some ϕ .

The action of conjugation creates a natural equivalence relation on Rat_d , the space of degree-*d* rational maps. We can then consider the quotient space $\mathcal{M}_d(K)$. Under this relation, equivalent maps have isomorphic automorphism groups, so the set of all maps with a non-trivial automorphism group is well defined in $\mathcal{M}_d(K)$. We call this the automorphism locus. The automorphism locus of \mathcal{M}_2 has been studied over fields of characteristic 0; we describe the automorphism locus of $\mathcal{M}_2(\overline{\mathbb{F}}_p)$, for all primes *p*, by following techniques from the proof of the former. When p = 2, it turns out that the automorphism locus is not Zariski-closed. (Received September 17, 2019)