1154-VS-2193 Ralph P Grimaldi* (grimaldi@rose-hulman.edu). Ternary Pell Strings - The Palindromes.
For $n \geq 1$ let a_{n} count the number of ternary strings $s_{1} s_{2} s_{3} \ldots s_{n}$ where (i) $s_{1}=0$; (ii) $s_{i} \in\{0,1,2\}$, for $2 \leq i \leq n$; and, (iii) $\left|s_{i}-s_{i-1}\right| \leq 1$, for $2 \leq i \leq n$. Then $a_{1}=1, a_{2}=2, a_{3}=5, a_{4}=12$, and $a_{5}=29$. In general, for $n \geq 3, a_{n}=2 a_{n-1}+a_{n-2}$, and a_{n} equals P_{n}, the nth Pell number.

For these P_{n} strings of length n, now let pal l_{n} count the number of palindromes of length n that appear among the P_{n} strings. We find that pal ${ }_{n}=P_{\frac{n}{2}}$ for n even, while pal $l_{n}=P_{\frac{n+1}{2}}$ for n odd.

Then, for the pal_{n} palindromic strings of length n, we determine (i) the number of occurrences of each of the symbols $0,1,2$; (ii) the sum of all the entries in the pal palindromes; (iii) the number of levels, rises and descents that occur within the strings; (iv) the number of runs that occur within the strings; (v) the number of inversions and coinversions for the strings; and, (vi) the sum of all the strings considered as base 3 integers.
(Received September 17, 2019)

