1154-VS-2193 Ralph P Grimaldi* (grimaldi@rose-hulman.edu). Ternary Pell Strings - The Palindromes. For $n \ge 1$ let a_n count the number of ternary strings $s_1s_2s_3...s_n$ where (i) $s_1 = 0$; (ii) $s_i \in \{0, 1, 2\}$, for $2 \le i \le n$;

and, (iii) $|s_i - s_{i-1}| \le 1$, for $2 \le i \le n$. Then $a_1 = 1$, $a_2 = 2$, $a_3 = 5$, $a_4 = 12$, and $a_5 = 29$. In general, for $n \ge 3$, $a_n = 2a_{n-1} + a_{n-2}$, and a_n equals P_n , the *n*th Pell number.

For these P_n strings of length n, now let pal_n count the number of palindromes of length n that appear among the P_n strings. We find that $pal_n = P_{\frac{n}{2}}$ for n even, while $pal_n = P_{\frac{n+1}{2}}$ for n odd.

Then, for the pal_n palindromic strings of length n, we determine (i) the number of occurrences of each of the symbols 0, 1, 2; (ii) the sum of all the entries in the pal_n palindromes; (iii) the number of levels, rises and descents that occur within the strings; (iv) the number of runs that occur within the strings; (v) the number of inversions and coinversions for the strings; and, (vi) the sum of all the strings considered as base 3 integers. (Received September 17, 2010)

(Received September 17, 2019)