1154-60-2320 Sunday A. Asogwa and Jebessa B. Mijena* (jebessa.mijena@gcsu.edu), 231 W. Hancock St., CBX 17, Milledgeville, GA 31061, and Erkan Nane. Non-existence results for space-time fractional stochastic partial differential equations.

Consider non-linear time-fractional stochastic reaction-diffusion equations of the following type,

$$\partial_t^\beta u_t(x) = -\nu(-\Delta)^{\alpha/2} u_t(x) + I^{1-\beta}[b(u) + \sigma(u) F(t,x)]$$

in (d + 1) dimensions, where $\nu > 0, \beta \in (0, 1), \alpha \in (0, 2]$. The operator ∂_t^{β} is the Caputo fractional derivative while $-(-\Delta)^{\alpha/2}$ is the generator of an isotropic α -stable Lévy process and $I^{1-\beta}$ is the Riesz fractional integral operator. The forcing noise denoted by $\dot{F}(t, x)$ is a Gaussian noise. These equations might be used as a model for materials with random thermal memory. We derive non-existence (blow-up) of global random field solutions under some additional conditions, most notably on b, σ and the initial condition. (Received September 17, 2019)