1154-57-186 **Ryo Ohashi*** (ryoohashi@kings.edu), 133 North River Street, Wilkes-Barre, PA 18711. The finite group actions on I-bundle over the projective plane \mathbb{P}^2 . Preliminary report.

A finite G-action on a manifold M is a monomorphism $\varphi: G \to Homeo(M)$, where G is a finite group. In this talk, M is an *I*-bundle over the projective plane \mathbb{P}^2 , where I = [0, 1]. We will discuss all finite G-actions on $\mathbb{P}^2 \times I$.

A method is to study actions on \mathbb{P}^2 . Nootice that its universal covering space is the 2-sphere \mathbb{S}^2 . Thus, we can lift any acting groups on \mathbb{P}^2 to \tilde{G} on \mathbb{S}^2 . It has been known the finite group actions on \mathbb{S}^2 , which is a subgroup of some permutation group S_n . This process enables us to analyze the finite *G*-actions on \mathbb{P}^2 by observing a fundamental region on \mathbb{S}^2 with the aid of an appropriate triangulation on \mathbb{S}^2 .

After establishing the actions on \mathbb{P}^2 , we may have optimistic feeling to describe the actions on $\mathbb{P}^2 \times I$, the *I*-bundle over the projective plane since *I* admits only \mathbb{Z}_2 -action. However, we may not always obtain $G \times \mathbb{Z}_2$. In fact, there are pitfalls in order to reach the conclusion which will be addressed in the talk. (Received August 21, 2019)