1154-55-2671 Kerry M. Luse* (lusek@trinitydc.edu) and Mark E. Kidwell. The Alexander polynomial of a rational link.

Our recent work showed certain terms of the Alexander polynomial $\Delta(x, y)$ of a rational link are related to the number and length of monochromatic twist sites in a particular diagram that we call the standard form. If the rational link has a reduced alternating diagram with no self-crossings, then $\Delta(-1, 0) = 1$. If the standard form of the rational link has Mmonochromatic twist sites, and the *j*th monochromatic twist site has m_j crossings, then $\Delta(-1, 0) = \prod_{j=1}^{M} (m_j + 1)$. Our proof employs Kauffman's clock moves and a lattice for the terms of $\Delta(x, y)$ in which the *y*-power cannot decrease. We conjecture that $\Delta(-1, 0) = 1$ holds for all 2-component alternating links with no self-crossings. (Received September 17, 2019)