1154-22-609 Marisa Gaetz* (mgaetz@mit.edu). Dual Pairs in Complex Reductive Groups. Preliminary report.

In Roger Howe's 1989 paper, "Remarks on classical invariant theory," Howe introduces the notion of a *dual pair of Lie* subalgebras – a pair $(\mathfrak{g}_1, \mathfrak{g}_2)$ of reductive Lie subalgebras of a Lie algebra \mathfrak{g} such that \mathfrak{g}_1 and \mathfrak{g}_2 are each other's centralizers in \mathfrak{g} . This notion has a natural analog for algebraic groups; namely, a *dual pair of subgroups* is a pair (G_1, G_2) of reductive subgroups of an algebraic group G such that G_1 and G_2 are each other's centralizers in G. We present substantial progress towards classifying the dual pairs of the complex classical groups $(GL(n, \mathbb{C}), SL(n, \mathbb{C}), Sp(2n, \mathbb{C}), O(n, \mathbb{C}),$ and $SO(n, \mathbb{C})$) and their projective counterparts $(PGL(n, \mathbb{C}), PSp(2n, \mathbb{C}), PO(n, \mathbb{C}), PSO(n, \mathbb{C}))$. The classifications of dual pairs in $Sp(2n, \mathbb{C}), GL(n, \mathbb{C}),$ and $O(n, \mathbb{C})$ are known, but lack a unified explicit treatment; we provide such a treatment. Additionally, we classify the dual pairs in $SL(n, \mathbb{C})$ and $SO(n, \mathbb{C})$, and present partial progress towards classifying the dual pairs in $PGL(n, \mathbb{C})$ and $PSp(2n, \mathbb{C})$. (Received September 08, 2019)