1154-13-403 Monica Ann Lewis* (malewi@umich.edu). The local cohomology of a parameter ideal with respect to an arbitrary ideal.

Let S be a complete intersection presented as R/J for R a regular ring and J a parameter ideal in R. Let I be an ideal containing J. It is well known that the set of associated primes of $H_I^i(S)$ can be infinite, but far less is known about the set of minimal primes. In 2017, Hochster and Núñez-Betancourt showed that if R has prime characteristic p > 0, then the finiteness of Ass $H_I^i(J)$ implies the finiteness of Min $H_I^{i-1}(S)$, raising the following question: is Ass $H_I^i(J)$ always finite? We give a positive answer when i = 2 but provide a counterexample when i = 3. The counterexample crucially requires Ass $H_I^2(S)$ to be infinite. The following question, to the best of our knowledge, is open: (under suitable hypotheses on R) does the finiteness of Ass $H_I^{i-1}(S)$ imply the finiteness of Ass $H_I^i(J)$? When S is a domain, we give a positive answer when i = 3. When S is locally factorial, we extend this to i = 4. Finally, if R has prime characteristic p > 0 and S is regular, we give a complete answer by showing that Ass $H_I^i(J)$ is finite for all $i \ge 0$. (Received September 03, 2019)