Emerald T Stacy* (estacy2@washcoll.edu), 300 Washington Ave, Chestertown, MD 21620, and Ozlem Ejder, Jaime Juul and Borys Kadets. Periodic Points of Polynomials in Finite Fields.
Let $\mathcal{F}(d, q)$ denote the set of monic, degree d, polynomials over the finite field \mathbb{F}_{q}. For $f \in \mathcal{F}(d, q)$, let $\operatorname{Per}(f)$ denote the number of periodic points of f over \mathbb{F}_{q}. Fixing d, as $q \rightarrow \infty$, what happens to the average number of periodic points under each function in $\mathcal{F}(d, q)$? In this talk, we will explore a heuristic to estimate this average, and compare the heuristic to data collected for some d and q. (Received September 05, 2019)

