In 1946 Erdős asked to determine or estimate the minimum number of distinct distances determined by an n-element planar point set V. He showed that a square integer lattice determines $\Theta(n / \sqrt{\log n})$ distinct distances, and conjectured that any n-element point set determines at least $n^{1-o(1)}$ distinct distances. In 2010, Guth and Katz answered Erdős's question by proving that every n-element planar point set determines $\Omega(n / \log n)$ distinct distances. In this talk, we will discuss a variant of this problem by Erdős and Gyárfás. For integers n, p, q with $p \geq q \geq 2$, let $D(n, p, q)$ denote the minimum number of distinct distances determined by a planar n-element point set V which has the property that every subset of p points from V spans at least q distinct distances. In a recent paper, Fox, Pach and Suk prove that, when $q=\binom{p}{2}-p+6, D(n, p, q)$ is always at least $n^{8 / 7-o(1)}$. We will discuss an improvement of their result and some recent nearly sharp bounds for a related (more general) graph Ramsey problem of Erdős and Shelah which arise. (Received September 11, 2019)

