even harder to find.
A square matrix H of order n whose entries are $\{ \pm 1\}$-valued is called a Hadamard matrix of order n if its rows are pairwise orthogonal. The famous Hadamard conjecture asserts that there exists a Hadamard matrix for every n which is a multiple of 4 . We consider the complimentary problem of bounding $H(n)$ - the number of Hadamard matrices of order n - from above.

It is easily established that $H(n)$ is at most $2\binom{n+1}{2}$. Using a novel approach to the so-called Littlewood-Offord problem for vector sums, we show that there exists some absolute constant $c>0$ such that for all sufficiently large $n, H(n)$ is at most $2^{(1-c) n^{2} / 2}$, thereby providing the only known non-trivial upper bound on the number of Hadamard matrices of order n. (Received September 11, 2019)

