1154-05-61 Ryan Kannanaikal* (rk635@cornell.edu), Department of Mathematics, Cornell University, Ithaca, NY 14853, and Noah Krakoff (nkrakoff@berkeley.edu), Department of Mathematics, University of California, Berkeley, Berkeley, CA 94704. On the Ramsey Number $R\left(K_{4}-e, K_{8}-e\right)$.
The Ramsey number $R(G, H)$ is the smallest integer $n$ such that every graph on $n$ vertices contains $G$ as a subgraph or its complement contains $H$ as a subgraph. We study $\left(J_{4}, J_{k}\right)$-graphs, where $J_{k}=K_{k}-e$ is the complete graph on $k$ vertices missing one edge. Note that $J_{4}$ is a pair of triangles sharing an edge. Thus, avoiding $J_{4}$ is less restrictive than the well studied case of avoiding triangles in Ramsey theory. Using a combination of theoretical and computational techniques we study properties of $J_{4}$-free graphs, and thus the structure of lower bound witnesses for $R\left(J_{4}, J_{k}\right)$. We considered the first unknown case, namely $k=8$. The previous bounds were $28 \leq R\left(J_{4}, J_{8}\right) \leq 38$, having been unchanged since 1998. Using our techniques we have improved the upper bound to 37 by exploiting the rich algebraic structure of the induced subgraphs a possible witness must contain. (Received July 27, 2019)

