1154-05-60 Marina Jacobo* (mjacobo1@pride.hofstra.edu), Department of Mathematics, Hofstra University, Hempstead, NY 11549, and David Shuster (dshuster21@amherst.edu), Department of Mathematics and Statistics, Amherst College, Amherst, MA 01003. Large Rank Numbers \& $\left(K_{s}-e\right) \times P_{n}$.
A k-ranking of a graph G is a function $f: V(G) \rightarrow\{1,2, \ldots, k\}$ such that if $f(u)=f(v)$ then every $u v$ path contains a vertex w such that $f(w)>f(u)$. The rank number of G, denoted $\chi_{r}(G)$, is the minimum k such that a k-ranking exists for G. The rank number is a variant of graph colorings. It is known that given a graph G and a positive integer t the question of whether $\chi_{r}(G) \leq t$ is NP-complete. The characteristics of any n-vertex graph whose rank number is equal to $n-1$ or $n-2$ is known; in this talk we extend this question to $n-3$. Also, we examine the extremal graphs such that their rank number is equal to $n, n-1, n-2$ and $n-3$.

The ranking of $K_{s} \times P_{n}$ has been previously studied, and a recursive formula for $\chi_{r}\left(K_{s} \times P_{n}\right)$ has been established. In this talk, we study the ranking of $K_{s}-e \times P_{n}$. We establish the rank number of $K_{s}-e \times P_{n}$ for even $s \geq 4$ and provide a conjecture for $\chi_{r}\left(K_{n}-e \times P_{n}\right)$ for odd $s \geq 5$. (Received July 26, 2019)

