1145-VS-676 Ralph P Grimaldi* (grimaldi@rose-hulman.edu). Ternary Sequences and the Pell Numbers.
For $n \geq 1$ let a_{n} count the number of sequences $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ where (i) $s_{1}=0$; (ii) $s_{i} \in\{0,1,2\}$, for $2 \leq i \leq n$; and, (iii) $\left|s_{i}-s_{i-1}\right| \leq 1$, for $2 \leq i \leq n$. Then $a_{1}=1, a_{2}=2, a_{3}=5, a_{4}=12$, and $a_{5}=29$. In general, for $n \geq 3, a_{n}=2 a_{n-1}+a_{n-2}$, and a_{n} equals P_{n}, the nth Pell number.

For these P_{n} sequences of length n, we count (i) the number of occurrences of each of the symbols $0,1,2$; (ii) the number of times each of the symbols $0,1,2$ occur in a given position; (iii) the number of levels, rises and descents that occur within the sequences; (iv) the number of runs that occur within the sequences; (v) the sum of all the sequences considered as base 3 integers; (vi) the number of inversions and coinversions for the sequences; and, (vii) the sum of the major indices for the sequences.

Finally, from the numbers of occurrences of each symbol in each of the n possible locations for the sequences of length n, we find an example of the hexagonal property. (Received September 12, 2018)

