1145-VS-2767 David Chang Luo* (david.luo@emory.edu), MSC 161201 Emory University Main, 1762 Clifton Road, Atlanta, GA 30322. Generalizations of the Abundancy Index and Outlaws.
The abundancy index of a positive integer n is the ratio of the sum of its divisors to itself; the abundancy index of n is two if and only if n is perfect. An abundancy outlaw is a rational number greater than one that fails to be the abundancy index of any positive integer. We generalize previous results about abundancy outlaws by defining a two variable abundancy index function as $I(x, n): \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Q}$ where $I(x, n)=\frac{\sum_{d| |} d^{x}}{n^{x}}$. By exploring upper bound properties of the abundancy index, we construct sufficient conditions for rationals greater than one that fail to be in the image of $I(x, n)$. Finally, we apply these results to observe properties of perfect numbers under the two variable abundancy index. (Received September 25, 2018)

