1145-VS-2310 Erhan Gürel* (egurel@metu.edu.tr), Middle East Technical University, N.C.C., TZ-32,
Güzelyurt, Mersin 10, Turkey. Products of values of certain quadratics forms.
We prove that for a fixed integer q, there exits an integer N such that the product $\Omega_{q}^{2}(n, D)=\left(1^{2}+D q^{2}\right)\left(2^{2}+D q^{2}\right) \ldots\left(n^{2}+\right.$ $D q^{2}$) is never a square for $D=2,3$ and 7 when $n>N$.

In particular, we can ask that how often does the product of consecutive values of a polynomial become a power? In 2008, J. Cilleruelo proved that $\Omega_{1}^{2}(n, 1)$ is a square only for $n=3$. After his work, many similar results were given for different polynomials as in [4],[5],[6],[7] and [8]. These type of products are studied for quadratic form $x^{2}+y^{2}$ in [7] and for the cubic form $x^{3}+y^{3}$ recently in [8]. In this work, we will study the product of consecutive values of the binary quadratic forms such as $x^{2}+D y^{2}$ for $D=2$ and 3. (Received September 25, 2018)

