Byungchul Cha, Adam Claman, Joshua Harrington, Ziyu Liu, Barbara Maldonado, Alexander Miller, Ann Palma, Tony W. H. Wong and Hongkwon Yi*

 (321_vin@berkeley.edu), 2083 Delaware St, Berkeley, CA 94709. Extensions on Conway's Wizard Problem. Preliminary report.Conway's Wizard Problem can be mathematically summarized in the following way. Given a sum s and a product p, do there exist two n-partitions of s into distinct multisets such that both multisets have the same product p ? If there are, we call s sum-admissible and p product-admissible. From this context, we define the following two functions. (1) $f(s)=$ number of n values such that s is sum-admissible. (2) $g(s)=$ number of p values such that s is sum-admissible; the case $g(s)=1$ is precisely what we need to solve Conway's problem. We derive and prove the formula for $f(s)$, and determine the value of s that gives $g(s)=1$. We further tackle the question: What would happen if we fix p instead of s ? Fixing the product as $p=m^{j}$, where m is a prime, we are led to study a special polynomial $f(x)=(x-m)(x-1)^{2} g(x)$ with $g(x) \in \mathbb{Z}[x]$. We subsequently prove that $p=m^{j}$ is product-admissible if and only if $j \geq 2 m+4$. (Received September 25, 2018)

