1145-VP-2984 Bernd Sing* (dr.bernd.sing@gmail.com), Department of Mathematics, University of the West Indies, Cave Hill, Bridgetown, St Michael BB11000, Barbados. Kolakoski sequences and Chvatals sequence of graphs. Preliminary report.
An infinite sequence z over the alphabet $\{1,2\}$ that equals its own run-length sequence, is called a Kolakoski-sequence (OEIS \#A000002):

$$
z=\underbrace{1}_{1} \underbrace{22}_{2} \underbrace{11}_{2} \underbrace{2}_{1} \underbrace{1}_{1} \underbrace{22}_{2} \cdots=
$$

Although it is conjectured that the letter frequencies are equal in the infinite sequence (i.e., half the letters are 1 s and half of them 2 s), it is not even know if the frequencies actually exist.

Seeking to understand this mysterious sequences better, one can consider sequences that equal their own run-length sequence over other alphabets with two letters: For alphabets consisting of two even or two odd numbers, one can easily calculate the limiting frequencies; in the case of one even and one odd number, one arrives at the same conjecture about the letter frequencies as for the alphabet $\{1,2\}$.

In order to find bounds on the letter frequencies, Vašek Chvátal considered a certain recursively defined sequence of digraphs $\left(G_{d}\right)_{d}$ obtained from the Kolakoski sequence under consideration. We study the structure and adjacency matrices of these graphs over various alphabets. (Received September 26, 2018)

