1145-VP-2004 Max Lind* (mlind314@icloud.com) and Eugene Fiorini (eugenefiorini@muhlenberg.edu). On Some Properties of Pebbling Configuration Graphs.

Consider a configuration S_G of pebbles on a simple, connected graph G. For $m, k \in \mathbb{N}, k < m$, an (m, k) pebbling move removes m pebbles from a vertex in V(G) and adds k pebbles to an adjacent vertex. A context $\Sigma = \{(m, k) \mid m, k \in \mathbb{N} \text{ and } k < m\}$ is the set of allowable pebbling moves on a graph with given configuration. A configuration graph $[S_G]_{\Sigma}$ associated with a configuration S_G is a Hasse diagram whose vertices represent subsequent configurations that can be reached from S_G , and whose edges correspond to a single pebbling move in Σ . We show that $[S_G]_{\Sigma}$ is bipartite with girth 4 for all Σ and prove under what conditions $[S_G]_{\Sigma} \cong [S_H]_{\Sigma}$ for simple, connected graphs G and H. Furthermore, we prove for which configurations $[S_G]_{\Sigma}$ is a symmetrical Hasse diagram and which sub-configurations are associated with subgraphs of $[S_G]_{\Sigma}$. Finally, we address the question: When is $[S_G]_{\Sigma}$ pebblable? (Received September 24, 2018)