1145-VP-1448Hong-Jian Lai, Mingquan Zhan and Taoye Zhang* (tuz3@psu.edu), Penn State Scranton,
120 Ridge View Dr, Dunmore, PA 18512, and Ju Zhou. s-hamiltonian and s-hamiltonian
connected line graphs of claw-free graphs.

For an integer $s \ge 0$, a graph G is s-hamiltonian if for any vertex subset $S \subseteq V(G)$ with $|S| \le s$, G - S is hamiltonian; and G is s-hamiltonian-connected if for any vertex subset $S \subseteq V(G)$ with $|S| \le s$, G - S is hamiltonian-connected. Thomassen in 1984 conjectured that every 4-connected line graph is hamiltonian. Lai and Shao [J. GraphTheory, 74 (2013), 344-358] proved that for a connected graph G and an integer $s \ge 5$, the line graph L(G) is s-hamiltonian if and only if L(G) is (s + 2)-connected. The results presented in this talk are:

(i). For an integer $s \ge 2$, the line graph L(G) of a claw-free graph G is s-hamiltonian if and only if L(G) is (s + 2)-connected.

(ii). The line graph L(G) of a claw-free graph G is 1-hamiltonian-connected if and only if L(G) is 4-connected. (Received September 21, 2018)