1145-VO-2581 Tom Edgar (edgartj@plu.edu) and David Richeson* (richesod@dickinson.edu). Gregory's theorem for inscribed and circumscribed regular polygons.
Archimedes famously used the perimeters of inscribed and circumscribed regular polygons to approximate the circumference of a circle and thus to obtain bounds for π. In 1667, James Gregory did the same, but for areas. Let I_{k} and C_{k} denote the areas of inscribed and circumscribed regular k-gons, respectively. Gregory proved that for all $n, I_{2 n}$ is the geometric mean of C_{n} and I_{n}, and $C_{2 n}$ is the harmonic mean of C_{n} and $I_{2 n}$. In this talk we give a brief history of Gregory's work and we present a short proof of his theorem. (Received September 25, 2018)

