1145-68-547 **Owen Levin*** (levin453@umn.edu). Approximation Algorithms for Network Connectivity. Preliminary report.

The problem discussed is to connect^{*} a set of initially disconnected^{*} points as quickly as possible. Assuming all points move at the same speed, this amounts to minimizing the maximum distance traveled. We give two new algorithms that outperform the state-of-the-art from the literature and a number of results bounding their optimality.

Let d(p,q) denote the Euclidean distance between $p, q \in \mathbb{R}^2$. Then given P, a set of n distinct points in \mathbb{R}^2 , define the r-disk graph, G(P,r) to be the weighted graph with vertex set P and edges between all $p, q \in P$ with $d(p,q) \leq r$ with weights equal to d(p,q).

* We call P connected when G(P, 1) is a connected graph, and disconnected otherwise. (Received September 09, 2018)