1145-60-69
Aaron Michael Yeager*, 913 S. Orchard, Stillwater, OK 74074. On the Variance of the Number of Roots of Complex Random Orthogonal Polynomials Spanned by OPUC.
Let $\left\{\varphi_{k}\right\}_{k=0}^{\infty}$ be a sequence of orthonormal polynomials on the unit circle (OPUC) with respect to a probability measure μ. We study the variance of the number of zeros of random linear combinations of the form

$$
P_{n}(z)=\sum_{k=0}^{n} \eta_{k} \varphi_{k}(z),
$$

where $\left\{\eta_{k}\right\}_{k=0}^{n}$ are complex-valued random variables. Under the assumption that μ satisfies $d \mu(\theta)=w(\theta) d \theta$, with $w(\theta) \geq c>0$ for $\theta \in[0,2 \pi)$, and the distribution for each η_{k} satisfies certain uniform bounds for the fractional and logarithmic moments, we show that the variance of the number of zeros of P_{n} in annuli that contain the unit circle is at most of the order $n \sqrt{n \log n}$ as $n \rightarrow \infty$. When μ is symmetric with respect to conjugation and in the Nevai class, and $\left\{\eta_{k}\right\}_{k=0}^{n}$ are i.i.d. complex-valued standard Gaussian, we prove a formula for the limiting value of variance of the number of zeros of P_{n} in annuli that do not contain the unit circle. (Received July 18, 2018)

