1145-57-311Ryo Ohashi* (ryoohashi@kings.edu), 133 North River Street, Wilkes-Barre, PA 18711. The
finite group actions on the projective plane. Preliminary report.

A finite G-action on a manifold M is a monomorphism $\varphi: G \to Homeo(M)$, where G is a finite group. In this talk, M is the projective plane \mathbb{P}^2 , and our goal is to describe all possible finite G-actions on \mathbb{P}^2 . Since the universal covering space of \mathbb{P}^2 is the 2-sphere \mathbb{S}^2 , we will lift the acting group on \mathbb{P}^2 to \widetilde{G} on \mathbb{S}^2 .

It has been known the finite group actions on \mathbb{S}^2 , hence we visualize the actions on \mathbb{S}^2 by an appropriate triangulation on it. \tilde{G} acting on \mathbb{S}^2 is embedded into S_n for some $n \in \mathbb{N}$, thus the triangulation on \mathbb{S}^2 contains n vertices and \tilde{G} permutes these vertices. This process enables us to analyze the finite G-actions on \mathbb{P}^2 by observing a fundamental region on \mathbb{S}^2 and to see the quotient spaces \mathbb{P}^2/φ .

Conversely, for a given non-orientable 2-dimensional closed orbifold, is it covered by \mathbb{P}^2 uniquely? The answer to this question is to look at the generators of \tilde{G} . Notice all elements in \tilde{G} contain geometric and topological "DNA" in addition to algebraic information such as their order. A typical DNA is orientability or an existence of fixed point. (Received August 31, 2018)