1145-46-1699 Joseph Eisner and Daniel Freeman* (daniel.freeman@slu.edu). Continuous Schauder frames for Banach spaces.

Given a Banach space X, a sequence of pairs $(x_j, f_j)_{j \in N}$ is called a Schauder frame of X if

$$x = \sum_{j \in N} f_j(x) x_j$$
 for all $x \in X$.

Instead of using a discrete representation with a series, continuous Schauder frames give a reconstruction formula using an integral. That is, if (M, μ) is a σ -finite measure space and $t \to (x_t, f_t)$ is a measurable map from M to $X \times X^*$ then we say that $(x_t, f_t)_{t \in M}$ is a continuous Schauder frame of X if

$$x = \int_{t \in M} f_t(x) x_t$$
 for all $x \in X$.

We prove that the properties shrinking and boundedly complete may be extended to continuous Schauder frames. Furthermore, every unconditional wavelet for $L_p(R)$ gives rise to a continuous wavelet transform where 1 . (ReceivedSeptember 24, 2018)