1145-35-764

Alessia E. Kogoj* (alessia.kogoj@uniurb.it), University of Urbino, Piazza della Repubblica 13, 61029 Urbino, PU, Italy, and Ermanno Lanconelli (ermanno.lanconelli@unibo.it), University of Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy. On the Dirichlet problem in cylindrical domains for evolution Oleinik-Radkevic PDE's: a Thychonov-type theorem.

We are concerned with linear second order PDE's of the type:

$$\mathcal{L} = \mathcal{L}_0 - \partial_t := \sum_{i,j=1}^n \partial_{x_i} (a_{i,j} \partial_{x_j}) - \sum_{j=i}^n b_j \partial_{x_j} - \partial_t.$$

We assume \mathcal{L}_0 with nonnegative characteristic form and satisfying the Oleinik-Radkevic rank hypoellipticity condition. By using Potential Theory, these hypotheses allow to construct Perron-Wiener solutions of the Dirichlet problems for \mathcal{L} and \mathcal{L}_0 on bounded open subsets of \mathbb{R}^{n+1} and of \mathbb{R}^n , respectively.

Our main result is the following Thychonov-type Theorem:

Let $O := \Omega \times]0, T[$ be a bounded cylindrical domain of \mathbb{R}^{n+1} , $\Omega \subset \mathbb{R}^n$, $x_0 \in \partial \Omega$ and $0 < t_0 < T$. Then $z_0 = (x_0, t_0) \in \partial O$ is \mathcal{L} -regular for O if and only if x_0 is \mathcal{L}_0 -regular for Ω .

As an application of our Main Theorem we show some regularity criteria for the boundary point in the Dirichlet problem for degenerate Ornstein- Uhlenbeck operators, as consequences of analogous criteria for Kolmogorov-Fokker-Planck equations. (Received September 14, 2018)