For the equation
Audison Beaubrun* (abeaubrun2013@my.fit.edu), Florida Institute of Technolgy, Department of Mathematical Sciences, 150 W University Blvd, Melbourne, FL 32901, and Tariel Kiguradze, Florida Institute of Technology, Department of Mathematical Sciences, 150 W University Blvd, Melbourne, FL 32901. Periodic Problems for Higher Order Nonlinear Hyperbolic Equations.

$$
\begin{equation*}
u^{(\mathbf{m})}=f\left(\mathbf{x}, \widehat{\mathcal{D}}^{\mathbf{m}}[u]\right) \tag{1}
\end{equation*}
$$

consider the periodic

$$
\begin{equation*}
u\left(\mathbf{x}+\boldsymbol{\omega}_{j}\right)=u(\mathbf{x}) \quad(j=1, \ldots, n) \tag{2}
\end{equation*}
$$

and the initial-periodic

$$
\begin{equation*}
u^{\left(\mathbf{k}_{j}\right)}\left(0, \hat{\mathbf{x}}_{j}\right)=\varphi_{k_{j}}\left(\hat{\mathbf{x}}_{j}\right) \quad\left(k_{j}=0, \ldots, m_{j}-1 ; j=1, \ldots, n_{0}\right), u\left(\mathbf{x}+\boldsymbol{\omega}_{j}\right)=u(\mathbf{x})\left(j=n_{0}+1, \ldots, n\right) \tag{3}
\end{equation*}
$$

conditions. Here $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), \boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{n}\right), \boldsymbol{\omega}_{j}=\left(0, \ldots, \omega_{j}, \ldots, 0\right), \mathbf{m}=\left(m_{1}, \ldots, m_{n}\right), \widehat{\mathcal{D}}^{\mathbf{m}}[u]=\left(u^{(\boldsymbol{\alpha})}\right)_{\boldsymbol{\alpha}<\mathbf{m}}$,

$$
\boldsymbol{\alpha}<\mathbf{m} \Leftrightarrow \alpha_{j} \leq m_{j}(j=1, \ldots, n) \text { and } \boldsymbol{\alpha} \neq \mathbf{m}
$$

$\widehat{\mathbf{x}}_{i}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$ and $\mathbf{k}_{j}=\left(0, \ldots, k_{j}, \ldots, 0\right)$. Necessary and sufficient conditions of solvability, unique solvability and well-posedness of problems (1), (2) and (1), (3) are established. (Received September 20, 2018)

