1145-34-2623

Ateq Alsaadi* (ateq.alsaadi@bison.howard.edu), Mathematics Department, Howard University, Washington, DC 20059, and Faina Berezovskaya. Power asymptotics of orbits of a Kolmogorov type polynomial vector field with a fixed Newton polyhendron. Preliminary report.

Using the Newton polyhendron method we consider asymptotics of trajectories in a vicinity of isolated equilibrium O(0,0,0) of a polynomial vector field $V(X_1,X_2,X_3)$ defined by the system of ordinary differential equations with the right hands: $X_1(\bar{x}) \equiv x_1 P(\bar{x})$, $X_2(x) \equiv x_2 Q(\bar{x})$, $X_3(\bar{x}) \equiv x_3 R(\bar{x})$, where $\bar{x} = (x_1, x_2, x_3)$. Newton polyhedron Γ_{000} is associated with V. **Theorem**. Any orbit of $V(\bar{x})$ that tends to O for $t \to \infty$ or $t \to -\infty$ in phase coordinates (x_1, x_2, x_3) has either power or trivial asymptotics

$$x_2 = k_1 x_1^{\rho_1} (1 + o(1)), x_3 = k_2 x_1^{\rho_2} (1 + o(1)), \quad \rho_1, \ \rho_2 > 0,$$

where (ρ_1, ρ_2) is a vector-index of Newton polyhedron Γ_{000} , k_1, k_2 are constants. (Received September 25, 2018)