We study the zero distribution of a sequence of polynomials with the recurrence $P_{m}(z)=-B(z) P_{m-r}(z)-A(z) P_{m-n}(z)$ where n and r are relatively prime and both not equal to 1 . We have shown that in the case that $n=4$ and $r=3$, the zeros will lie on the curve given by $\operatorname{Im} \frac{A^{r}(z)}{B^{n}(z)}=0$ and $\operatorname{Re} \frac{A^{r}(z)}{B^{n}(z)} \geq 0$, except for values of z which satisfy $B(z)=0$. We also give results towards determining the zero distribution of the general recurrence. (Received August 03, 2018)

