1145-20-2368 Arturo Magidin^{*} (magidin@louisiana.edu), Mathematics Department, University of Louisiana at Lafayette, P.O. Box 43568, Lafayette, LA 70504-3568. The Chermak-Delgado lattice of a 2-nilpotent product. Preliminary report.

If G is a finite group, $H \leq G$, the Chermak-Delgado measure of H is $m_G(H) = |H||C_G(H)|$. The collection of subgroups of G for which the Chermak-Delgado measure is as large as possible is the Chermak-Delgado lattice of G, $\mathcal{L}(G)$. It is known that the Chermak-Delgado lattice of a direct product is the direct product of the Chermak-Delgado lattice: $\mathcal{L}(G_1 \times G_2) = \mathcal{L}(G_1) \times \mathcal{L}(G_2)$. We consider the question of how $\mathcal{L}(G_1 \amalg^{\mathfrak{N}_2} G_2)$ may be related to $\mathcal{L}(G_1)$ and $\mathcal{L}(G_2)$, where $G_1 \amalg^{\mathfrak{N}_2} G_2$ is the 2-nil product of G_1 and G_2 , $G_1 * G_2/([G_1, G_2] \cap (G_1 * G_2)_3)$, where $G_1 * G_2$ is the free product and $(G_1 * G_2)_3$ is the third term of the lower central series of $G_1 * G_2$. (Received September 25, 2018)