1145-20-1834 Alexander M. Heaton, 3200 N. Cramer St., Milwaukee, WI, Songpon Sriwongsa, 3200 N. Cramer St., Milwaukee, WI 53211, and Jeb F. Willenbring* (jw@uwm.edu), 3200 N. Cramer St., Milwaukee, WI 53211. Embedding \mathfrak{sl}_k in \mathfrak{sl}_n as a small subalgebra and the representations of the symmetric group. Preliminary report.

In joint work with Gregg Zuckerman the notion of a *small* subalgebra was introduced. That is, given a simple Lie algebra \mathfrak{g} and a simple subalgebra \mathfrak{k} , we say that \mathfrak{k} is *small* in \mathfrak{g} if there exists a positive integer b (depending only on \mathfrak{g} and \mathfrak{k}) such that in the restriction to \mathfrak{k} of each finite dimensional representation of \mathfrak{g} there exists an irreducible \mathfrak{k} -representation of dimension at most b.

We assume the field is \mathbb{C} . Let $n \geq 3$. Given any subalgebra, \mathfrak{k} , of \mathfrak{sl}_n , if $\mathfrak{k} \cong \mathfrak{sl}_2$ then \mathfrak{k} is small in \mathfrak{sl}_n . In joint work with Hassan Lhou the speaker found that n is a best possible bound b in this case.

The question of when $\mathfrak{k} \cong \mathfrak{sl}_k$ is small in \mathfrak{sl}_n is related to the notion of plethysm. Using a well understood interpretation of plethysm, we relate the question of small $\mathfrak{k} \cong \mathfrak{sl}_k$ to the representation theory of the symmetric group. (Received September 24, 2018)