1145-18-1652 **Kenichi Shimizu***, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan. *A description of the relative Serre functor for comodule algebras.*

Let \mathcal{C} be a finite tensor category, and let \mathcal{M} be an exact left \mathcal{C} -module category. The relative Serre functor of \mathcal{M} , introduced by Fuchs, Schaumann and Schweigert, is an endofunctor S on \mathcal{M} such that there is a natural isomorphism $\underline{\operatorname{Hom}}(M, N)^* \cong \underline{\operatorname{Hom}}(N, S(M))$ for $M, N \in \mathcal{M}$, where $\underline{\operatorname{Hom}}$ is the internal Hom functor. In this talk, I discuss the case where $\mathcal{C} = H$ -mod and $\mathcal{M} = L$ -mod for a finite-dimensional Hopf algebra H and a finite-dimensional exact left Hcomodule algebra L. Such an algebra L is shown to be Frobenius by an argument using the Frobenius-Perron dimension. I give an explicit description of the relative Serre functor of L-mod and its twisted module structure $S(X \otimes M) \cong X^{**} \otimes S(M)$ $(X \in H$ -mod, $M \in L$ -mod) in terms of integrals of H and the Frobenius structure of L. (Received September 23, 2018)