1145-15-2036 Jillian L Glassett* (jillian.glassett@wsu.edu) and Judith J McDonald. Spectrally arbitrary patterns over rings with unity.

A zero-nonzero pattern \mathcal{A} is a matrix with entries from the set $\{0, *\}$. A square pattern \mathcal{A} is spectrally arbitrary over R, a commutative ring with unity, if for each n-th degree monic polynomial $f(x) \in R[x]$, there exists a matrix A over R with pattern \mathcal{A} such that characteristic polynomial of A, $p_A(x)$, is f(x). \mathcal{A} is relaxed spectrally arbitrary over R if for each n-th degree monic polynomial $f(x) \in R[x]$, there exists a matrix A over R with either pattern \mathcal{A} or a subpattern of \mathcal{A} such that $p_A(x) = f(x)$. We evaluate how the structure of rings affects how we determine if a pattern is spectrally arbitrary. We consider whether a pattern that is spectrally arbitrary over R is spectrally arbitrary or relaxed spectrally arbitrary over \mathbb{Z}_m for all $m \in \mathbb{Z}_+$ and spectrally arbitrary over \mathbb{Q} . Similarly, a pattern that is spectrally arbitrary over the p-adic integers is spectrally arbitrary over the p-adic numbers. (Received September 24, 2018)